Characterizing corn-straw-degrading actinomycetes and evaluating application efficiency in straw-returning experiments
文献类型: 外文期刊
第一作者: Gong, Xiujie
作者: Gong, Xiujie;Yu, Yang;Hao, Yubo;Jiang, Yubo;Lv, Guoyi;Li, Liang;Qian, Chunrong;Wang, Qiuju;Ma, Juntao
作者机构:
关键词: corn straw decomposing; microbial consortium G123; genome analysis; straw returning; microbial diversity
期刊名称:FRONTIERS IN MICROBIOLOGY ( 影响因子:6.064; 五年影响因子:6.843 )
ISSN:
年卷期: 2022 年 13 卷
页码:
收录情况: SCI
摘要: Corn straw is an abundant lignocellulose resource and by-product of agricultural production. With the continuous increase in agricultural development, the output of corn straw is also increasing significantly. However, the inappropriate disposal of straw results in wasting of resources, and also causes a serious ecological crisis. Screening microorganisms with the capacity to degrade straw and understanding their mechanism of action is an efficient approach to solve such problems. For this purpose, our research group isolated three actinomycete strains with efficient lignocellulose degradation ability from soil in the cold region of China: Streptomyces sp. G1(T), Streptomyces sp. G2(T) and Streptomyces sp. G3(T). Their microbial properties and taxonomic status were assessed to improve our understanding of these strains. The three strains showed typical characteristics of the genus Streptomyces, and likely represent three different species. Genome functional annotation indicated that most of their genes were related to functions like carbohydrate transport and metabolism. In addition, a similar phenomenon also appeared in the COG and CAZyme analyses, with a large number of genes encoding carbohydrate-related hydrolases, such as cellulase, glycosidase and endoglucanase, which could effectively destroy the structure of lignocellulose in corn straw. This unambiguously demonstrated the potential of the three microorganisms to hydrolyze macromolecular polysaccharides at the molecular level. In addition, in the straw-returning test, the decomposing consortium composed of the three Streptomyces isolates (G123) effectively destroyed the recalcitrant bonds between the various components of straw, and significantly reduced the content of active components in corn straw. Furthermore, microbial diversity analysis indicated that the relative abundance of Proteobacteria, reportedly associated with soil antibiotic resistance and antibiotic degradation, was significantly improved with straw returning at both tested time points. The microbial diversity of each treatment was also dramatically changed by supplementing with G123. Taken together, G123 has important biological potential and should be further studied, which will provide new insights and strategies for appropriate treatment of corn straw.
分类号:
- 相关文献
作者其他论文 更多>>
-
Trace phospholipid and fatty acid differences between dairy and plant-based milk products by 1 H and 31 P NMR spectroscopy combined with multivariate statistical analysis
作者:Wang, Tongtong;Tan, Sijia;Li, Liang;Jiang, Bin;Wang, Dan;Liu, Qingyi;Chen, Gang
关键词:Dairy cream; Butter; Plant-based cream; Margarine; Multivariate statistical analysis
-
Detection and characterization of bovine hepacivirus in cattle and sheep from Hulunbuir, northeastern China
作者:Ma, Jingge;Liu, Ziyan;Liu, Ning;Wang, Zedong;Ma, Jingge;Wei, Feng;Wei, Zhiwei;Zheng, Xiangyu;Li, Liang;Liu, Ziyan;Wang, Wei
关键词:bovine hepacivirus (BovHepV); sheep; cattle; phylogenetic evolution; China
-
OsRHS Negatively Regulates Rice Heat Tolerance at the Flowering Stage by Interacting With the HSP Protein cHSP70-4
作者:Mao, Xingxue;Yu, Hang;Zhang, Lanlan;Lv, Shuwei;Jiang, Liqun;Zhang, Jing;Sun, Bingrui;Li, Chen;Ma, Yamei;Liu, Qing;Xue, Jiao;Zhu, Qingfeng;Feng, Yanzhao;Yu, Yang
关键词:flowering stage; heat tolerance; HSP70; OsRHS; PME; rice
-
Inoculation of the Morchella importuna mycosphere with Pseudomonas chlororaphis alleviated a soil-borne disease caused by Paecilomyces penicillatus
作者:Yu, Yang;Kang, Xia;Liu, Tianhai;Wang, Yong;Tang, Jie;Peng, Weihong;Tan, Hao;Martin, Francis M.;Tan, Hao;Martin, Francis M.
关键词:Diversity; Disease suppression; Function;
Morchella importuna ; Mycosphere soil microbiota;Pseudomonas chlororaphis -
Adaptation of Diverse Maize Germplasm to Spring Season Conditions in Northeast China
作者:Li, Yi;Yang, Zhiyuan;Zhang, Fengyi;Zhang, Yuxing;Li, Mingshun;Zhang, Degui;Hao, Zhuanfang;Weng, Jianfeng;Li, Xinhai;Yong, Hongjun;Li, Yi;Yang, Zhiyuan;Shao, Yong;Jin, Zhenguo;Gao, Li;Nan, Yuantao;Yu, Yang
关键词:maize population; general combining ability; specific combining ability; Northeast China
-
Comparative transcriptomics and metabolomics provide insight into degeneration-related physiological mechanisms of Morchella importuna after long-term preservation
作者:Chen, Ying;Cao, Xuelian;Xie, Liyuan;Tang, Jie;Liu, Lixu;Wang, Di;Wu, Xiang;Liu, Tianhai;Yu, Yang;Wang, Yong;Peng, Weihong;Tan, Hao;Martin, Francis;Tan, Hao;Martin, Francis
关键词:
-
Molecular dissection of hemizygote-dependent dominance of super-early flowering in soybean
作者:Xu, Xin;Yu, Yang;Jiang, Bingjun;Cao, Dong;Zhang, Lixin;Jia, Hongchang;Sun, Xuegang;Chen, Li;Yuan, Shan;Chen, Fulu;Lu, Zefu;Liu, Yanhong;Naser, Mahmoud;Wu, Tingting;Wu, Cunxiang;Sun, Shi;Han, Tianfu;Yu, Yang;Cao, Dong;Zhang, Qingzhu;Han, Tianfu
关键词:Soybean; Hemizygote-dependent dominance; Flowering time; siRNA; DNA methylation