Attention-optimized DeepLab V3+for automatic estimation of cucumber disease severity

文献类型: 外文期刊

第一作者: Li, Kaiyu

作者: Li, Kaiyu;Zhang, Lingxian;Li, Shufei;Zhang, Lingxian;Ma, Juncheng;Li, Bo

作者机构:

关键词: Semantic segmentation; DeepLab V3+; Attention mechanism; Transfer learning; Disease severity

期刊名称:PLANT METHODS ( 影响因子:5.827; 五年影响因子:5.904 )

ISSN:

年卷期: 2022 年 18 卷 1 期

页码:

收录情况: SCI

摘要: Background Automatic and accurate estimation of disease severity is critical for disease management and yield loss prediction. Conventional disease severity estimation is performed using images with simple backgrounds, which is limited in practical applications. Thus, there is an urgent need to develop a method for estimating the disease severity of plants based on leaf images captured in field conditions, which is very challenging since the intensity of sunlight is constantly changing, and the image background is complicated. Results This study developed a simple and accurate image-based disease severity estimation method using an optimized neural network. A hybrid attention and transfer learning optimized semantic segmentation model was proposed to obtain the disease segmentation map. The severity was calculated by the ratio of lesion pixels to leaf pixels. The proposed method was validated using cucumber downy mildew, and powdery mildew leaves collected under natural conditions. The results showed that hybrid attention with the interaction of spatial attention and channel attention can extract fine lesion and leaf features, and transfer learning can further improve the segmentation accuracy of the model. The proposed method can accurately segment healthy leaves and lesions (MIoU = 81.23%, FWIoU = 91.89%). In addition, the severity of cucumber leaf disease was accurately estimated (R-2 = 0.9578, RMSE = 1.1385). Moreover, the proposed model was compared with six different backbones and four semantic segmentation models. The results show that the proposed model outperforms the compared models under complex conditions, and can refine lesion segmentation and accurately estimate the disease severity. Conclusions The proposed method was an efficient tool for disease severity estimation in field conditions. This study can facilitate the implementation of artificial intelligence for rapid disease severity estimation and control in agriculture.

分类号:

  • 相关文献
作者其他论文 更多>>