Enhancing potato leaf protein content, carbon-based constituents, and leaf area index monitoring using radiative transfer model and deep learning
文献类型: 外文期刊
第一作者: Feng, Haikuan
作者: Feng, Haikuan;Fan, Yiguang;Ma, Yanpeng;Liu, Yang;Chen, Riqiang;Bian, Mingbo;Fan, Jiejie;Yang, Guijun;Zhao, Chunjiang;Feng, Haikuan;Zhao, Chunjiang;Yue, Jibo;Fu, Yuanyuan;Leng, Mengdie;Jin, Xiuliang;Zhao, Yu
作者机构:
关键词: Potato; Deep learning; Radiative transfer model; Transfer learning; Leaf protein content
期刊名称:EUROPEAN JOURNAL OF AGRONOMY ( 影响因子:5.5; 五年影响因子:5.9 )
ISSN: 1161-0301
年卷期: 2025 年 166 卷
页码:
收录情况: SCI
摘要: Accurate determination of potato leaf protein content (Cp), carbon-based constituents (CBC), and leaf area index (LAI) are crucial for precise monitoring of potato growth. Dynamic monitoring of leaf Cp, CBC, and LAI can provide valuable insights for agricultural management, such as analyzing the impact of environment stress factors on potato growth throughout its lifecycle. Currently, the most commonly used method for estimating crop parameters is the vegetation spectral feature-statistical regression approach. However, leaf Cp and CBC estimation are greatly influenced by water absorptions, as they exhibited overlapping spectral features in the shortwave infrared (SWIR) region. Consequently, the accuracy of protein estimation using traditional vegetation spectral feature-statistical regression methods is limited. This study aims to propose a comprehensive approach called PCPNet (Potato Canopy and Leaf Parameter Network), which could jointly estimate potato canopy and leaf parameters including Cp, CBC, and LAI. The performance of the PCPNet was compared with traditional spectral feature-statistical regression methods in estimating Cp, CBC and LAI. A simulated dataset for pre-training was generated using the PROSPECT-PRO and SAIL radiative transfer models to represent various complex scenarios encountered in real-world potato cultivation practices. The designed PCPNet was initially pre-trained based on this simulated dataset and then re-trained using ground-based measurements from five potato growing seasons across two distinct regions in China through transfer learning techniques. The validation of potato canopy and leaf parameters was conducted based on the estimations provided by the PCPNet model, while assessing their accuracy. This study yields the following results: (1) The PCPNet-based deep learning model demonstrated markedly superior accuracy in estimating potato Cp, CBC, and LAI compared to traditional machine learning models. (2) The deep learning model pretrained with transfer learning exhibited greater estimation accuracy than the deep learning model trained from scratch. In future research, experiments should be conducted across multiple regions and crops to verify both accuracy and generalizability of this approach in remote sensing of leaf Cp, CBC, and LAI.
分类号:
- 相关文献
作者其他论文 更多>>
-
UssNet: a spatial self-awareness algorithm for wheat lodging area detection
作者:Zhang, Jun;Wu, Qiang;Duan, Fenghui;Liu, Cuiping;Xiong, Shuping;Ma, Xinming;Cheng, Jinpeng;Feng, Mingzheng;Dai, Li;Wang, Xiaochun;Yang, Hao;Yang, Guijun;Chang, Shenglong
关键词:Unmanned aerial vehicle; State space models; Wheat lodging area identification; Semantic segmentation
-
Biochemical Sources of Fulvic Acid and its Application in Agriculture
作者:Chen, Yu-He;Liu, Yang;Liu, Zun-Qi;Chen, Yu-He;Liu, Jialei
关键词:Biochemical fulvic acid; origin of fulvic acid; drought resistance; salt stress resistance; heavy metal ion contamination; increase crop yields
-
The strategies for improving phosphorus-use efficiency in plant cell
作者:Wang, Jingxin;Wei, Zhimin;Zhao, Yu;Xia, Xueyan;Cui, Jihan;Li, Shunguo
关键词:Phosphorus-use efficiency (PUE); Pi redistribution; release from organic phosphorus (Po); Pi-saving metabolic routes
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
A Comprehensive Evaluation of Monocular Depth Estimation Methods in Low-Altitude Forest Environment
作者:Jia, Jiwen;Kang, Junhua;Gao, Xiang;Zhang, Borui;Yang, Guijun;Chen, Lin;Yang, Guijun
关键词:monocular depth estimation; CNN; vision transformer; forest environment; comparative study
-
Single atom Z-scheme heterostructure catalysts of photosensitive metal-organic nanorings and graphite-C3N4 for visible light-driven hydrogen production
作者:Hou, Chao-Ping;Liu, Yang;Liu, Jia-Xin;Li, Xin-Ao;Liang, Zi-Zhan;Liu, Jun-Min;Hou, Chao-Ping;Tan, Li-Lin
关键词:Metal-organic nanoring; Z-scheme heterojunction; Single-atom catalyst; Photocatalytic hydrogen evolution