Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.)

文献类型: 外文期刊

第一作者: Li, ZK

作者: Li, ZK;Fu, BY;Gao, YM;Xu, JL;Ali, J;Lafitte, HR;Jiang, YZ;Rey, JD;Vijayakumar, CHM;Maghirang, R;Zheng, TQ;Zhu, LH

作者机构:

关键词: abiotic stress tolerances;genetic networks;linkage disequilibrium;QTLs;QUANTITATIVE TRAIT LOCUS;FUNCTIONAL GENOMICS;INSERTIONAL MUTAGENESIS;PHOTOPERIOD SENSITIVITY;MULTILOCUS ORGANIZATION;LINKAGE DISEQUILIBRIUM;DRAFT SEQUENCE;ARABIDOPSIS;POPULATION;TOMATO

期刊名称:PLANT MOLECULAR BIOLOGY ( 影响因子:4.076; 五年影响因子:4.89 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Tremendous efforts have been taken worldwide to develop genome-wide genetic stocks for rice functional genomic (FG) research since the rice genome was completely sequenced. To facilitate FG research of complex polygenic phenotypes in rice, we report the development of over 20 000 introgression lines (ILs) in three elite rice genetic backgrounds for a wide range of complex traits, including resistances/tolerances to many biotic and abiotic stresses, morpho-agronomic traits, physiological traits, etc., by selective introgression. ILs within each genetic background are phenotypically similar to their recurrent parent but each carries one or a few traits introgressed from a known donor. Together, these ILs contain a significant portion of loci affecting the selected complex phenotypes at which allelic diversity exists in the primary gene pool of rice. A forward genetics strategy was proposed and demonstrated with examples on how to use these ILs for large-scale FG research. Complementary to the genome-wide insertional mutants, these ILs opens a new way for highly efficient discovery, candidate gene identification and cloning of important QTLs for specific phenotypes based on convergent evidence from QTL position, expression profiling, functional and molecular diversity analyses of candidate genes, highlights the importance of genetic networks underlying complex phenotypes in rice that may ultimately lead to more complete understanding of the genetic and molecular bases of quantitative trait variation in rice.

分类号: Q946

  • 相关文献

[1]Association mapping analysis of fiber yield and quality traits in Upland cotton (Gossypium hirsutum L.). Mulugeta Seyoum Ademe,Du, Xiongming,Jia, Yinhua,Shoupu He,Zhaoe Pan,Junling Sun,Qinglian Wang,Hongde Qin,Jinhai Liu,Hui Liu,Jun Yang,Dongyong Xu,Jinlong Yang,Zhiying Ma,Jinbiao Zhang,Zhikun Li,Zhongmin Cai,Xuelin Zhang,Xin Zhang,Aifen Huang,Xianda Yi,Guanyin Zhou,Lin Li,Haiyong Zhu,Baoyin Pang,Liru Wang,Yinhua Jia,Xiongming Du.

[2]Development of eighteen polymorphic microsatellite markers in Scylla paramamosain by 5 ' anchored PCR technique. Cui, Haiyu,Ma, Hongyu,Ma, Lingbo,Ma, Chunyan,Ma, Qunqun,Cui, Haiyu,Ma, Qunqun.

[3]The dopamine D2 receptor gene polymorphisms associated with chicken broodiness. Xu, H. P.,Shen, X.,Zhou, M.,Luo, C. L.,Kang, L.,Liang, Y.,Zeng, H.,Nie, Q. H.,Zhang, D. X.,Zhang, X. Q.,Zhou, M.,Kang, L.. 2010

[4]Association Analysis in Rice: From Application to Utilization. Zhang, Peng,Zhong, Kaizhen,Tong, Hanhua,Shahid, Muhammad Qasim. 2016

[5]Development and evaluation of the first high-throughput SNP array for common carp (Cyprinus carpio). Xu, Jian,Zhao, Zixia,Li, Jiongtang,Jiang, Yanliang,Zhang, Yan,Li, Qiang,Zhu, Yuanyuan,Liu, Yuanyuan,Xu, Peng,Sun, Xiaowen,Zhang, Xiaofeng,Zheng, Xianhu,Kuang, Youyi,Sun, Xiaowen,Feng, Jianxin,Li, Chuangju,Yu, Juhua,Xu, Peng. 2014

[6]Association Analysis of the Amino Acid Contents in Rice. Zhao, Weiguo,Chung, Jong-Wook,Park, Yong-Jin,Zhao, Weiguo,Park, Eun-Jin,Chung, Ill-Min,Ahn, Joung-Kuk,Kim, Gwang-Ho,Zhao, Weiguo. 2009

[7]Genetic Diversity, Population Structure, and Linkage Disequilibrium of an Association-Mapping Panel Revealed by Genome-Wide SNP Markers in Sesame. Cui, Chengqi,Mei, Hongxian,Liu, Yanyang,Zhang, Haiyang,Zheng, Yongzhan,Mei, Hongxian,Liu, Yanyang,Zhang, Haiyang,Zheng, Yongzhan,Mei, Hongxian,Liu, Yanyang,Zhang, Haiyang,Zheng, Yongzhan. 2017

[8]Evaluation of the genetic diversity and genome-wide linkage disequilibrium of Chinese maize inbred lines. Wang, Ming,Zhang, Xiaobo,Zheng, Yonglian,Zhao, Jiuran,Song, Wei. 2011

[9]An analysis of population structure and linkage disequilibrium using multilocus data in 187 maize inbred lines (Retracted article. See vol. 28, pg. 135, 2011). Xie, Chuanxiao,Li, Mingshun,Li, Xinhai,Xiao, Muji,Hao, Zhuanfang,Zhang, Shihuang,Warburton, Marilyn,Zhao, Qi. 2008

[10]Estimation of linkage disequilibrium levels and haplotype block structure in Chinese Simmental and Wagyu beef cattle using high-density genotypes. Niu, Hong,Zhu, Bo,Guo, Peng,Zhang, Wengang,Xue, Jinglong,Chen, Yan,Zhang, Lupei,Gao, Huijiang,Gao, Xue,Xu, Lingyang,Li, Junya.

[11]Linkage Disequilibrium Estimation of Chinese Beef Simmental Cattle Using High-density SNP Panels. Zhu, M.,Zhu, B.,Wang, Y. H.,Wu, Y.,Xu, L.,Guo, L. P.,Yuan, Z. R.,Zhang, L. P.,Gao, X.,Gao, H. J.,Xu, S. Z.,Li, J. Y.,Zhu, B..

[12]QTL analysis for resistance to preharvest sprouting in rice (Oryza sativa). Zhang, Y. Z.,Gao, F. Y.,Ren, G. J.,Lu, X. J.,Sun, S. X.,Li, H. J.,Gao, Y. M.,Luo, H.,Yan, W. G..

[13]Genotyping-by-sequencing-based genome-wide association studies on Verticillium wilt resistance in autotetraploid alfalfa (Medicago sativa L.). Yu, Long-Xi,Zhang, Tiejun,Zheng, Ping,Main, Dorrie,Rodringuez, Jonas,Zhang, Tiejun.

[14]A genome-wide survey with different rapeseed ecotypes uncovers footprints of domestication and breeding. Wei, Dayong,Cui, Yixin,He, Yajun,Ding, Yijuan,Li, Jiana,Qian, Wei,Wei, Dayong,Xiong, Qing,Qian, Lunwen,Tong, Chaobo,Lu, Guangyuan,Jung, Christian.

[15]Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). Xu, Liping,Hu, Kaining,Wen, Jing,Yi, Bin,Shen, Jinxiong,Ma, Chaozhi,Tu, Jinxing,Fu, Tingdong,Zhang, Zhenqian,Guan, Chunyun,Chen, Song,Hua, Wei,Li, Jiana.

[16]Polymorphisms of caprine GDF9 gene and their association with litter size in Jining Grey goats. Feng, T.,Chu, M. X.,Cao, G. L.,Di, R.,Fang, L.,Geng, C. X.,Chen, H. Q.,Lang, X. Z.,Liu, X. L.,Li, N..

[17]Genetic diversity, linkage disequilibrium, and association mapping analyses of peach (Prunus persica) landraces in China. Cao, Ke,Wang, Lirong,Zhu, Gengrui,Fang, Weichao,Chen, Changwen,Luo, Jing. 2012

[18]Estimates of linkage disequilibrium and effective population sizes in Chinese Merino (Xinjiang type) sheep by genome-wide SNPs. Liu, Shudong,He, Sangang,Chen, Lei,Li, Wenrong,Liu, Mingjun,He, Sangang,Chen, Lei,Li, Wenrong,Liu, Mingjun,Di, Jiang.

[19]Two Novel SNPs in HSF1 Gene Are Associated with Thermal Tolerance Traits in Chinese Holstein Cattle. Li, Qiu-Ling,Ju, Zhi-Hua,Huang, Jin-Ming,Li, Jian-Bin,Li, Rong-Ling,Hou, Ming-Hai,Wang, Chang-Fa,Zhong, Ji-Feng.

[20]A combined linkage and regional association mapping validation and fine mapping of two major pleiotropic QTLs for seed weight and silique length in rapeseed (Brassica napus L.). Li, Na,Shi, Jiaqin,Wang, Xinfa,Liu, Guihua,Wang, Hanzhong. 2014

作者其他论文 更多>>