Cloning and Functional Validation of the Candidate Gene LuWRKY39 Conferring Resistance to Septoria linicola (Speg.) Garassini from Flax

文献类型: 外文期刊

第一作者: Chen, Si

作者: Chen, Si;Yuan, Hongmei;Wu, Guangwen;Liu, Dandan;Chen, Jing;Liu, Yan;Yin, Weiping;Li, Cen;Wu, Linlin;Ma, Jun;Bian, Daolin;Zhang, Liguo;Yang, Xue;Chen, Le

作者机构:

关键词: flax; Septoria linicola; WRKY transcription factor; resistance-related genes; functional validation

期刊名称:AGRICULTURE-BASEL ( 影响因子:3.6; 五年影响因子:3.8 )

ISSN:

年卷期: 2025 年 15 卷 14 期

页码:

收录情况: SCI

摘要: WRKY transcription factors play key roles in plant immune responses, including resistance to fungal pathogens. In the present study, we identified a flax resistance-related gene Lus10021999, named LuWRKY39. Here, to identify the role of WRKY transcription factor in resistance of flax against Septoria linicola, we cloned and analyzed the gene LuWRKY39 via homologous cloning using bioinformatics methods and localized the encoded protein. Quantitative real-time PCR (qRT-PCR) was used to explore the response of this gene to S. linicola. The results showed that the gene that is 948 bp long exhibited the closest genetic relationship to WRKY in castor (Ricinus communis), as revealed by phylogenetic analysis, and the encoded protein was localized in the nucleus. The LuWRKY39 gene showed higher expression levels in resistant flax materials than in susceptible ones, and higher in roots and stems than in leaves. Furthermore, gene expression showed an upward trend following treatment with salicylic acid (SA) and methyl jasmonate (MeJA), indicating that LuWRKY39 is involved in the regulation of SA and JA signals. By silencing LuWRKY39 in flax using virus-induced gene silencing (VIGS), the processed plants were more sensitive to S. linicola than untreated plants. Gene expression analysis and disease index statistics confirmed that the silenced plants were more susceptible, highlighting the crucial role of LuWRKY39 in flax disease resistance. This study provides a foundation for functional investigations of WRKY genes in flax and the identification of disease resistance genes.

分类号:

  • 相关文献
作者其他论文 更多>>