Plant and soil responses to grazing intensity drive changes in the soil microbiome in a desert steppe
文献类型: 外文期刊
第一作者: Wang, Zhen
作者: Wang, Zhen;Jiang, Shenyi;Wang, Hai;Jin, Ke;Wu, Riliga;Na, Risu;Mu, Huabing;Ta, Na;Wang, Zhen;Jiang, Shenyi;Struik, Paul C.
作者机构:
关键词: Alpha diversity; Bacterial communities; Fungal communities; Soil-plant-herbivore system; Soil fertility; Stocking rate
期刊名称:PLANT AND SOIL ( 影响因子:4.993; 五年影响因子:5.44 )
ISSN: 0032-079X
年卷期:
页码:
收录情况: SCI
摘要: Background and aims Grazing pressure can degrade environmental quality and disrupt ecosystem structure and functions, while its potential effect on the soil microbiome is unclear. Method We evaluated the effects of grazing intensity (CK: no grazing, LG: light grazing, MG: moderate grazing, HG: heavy grazing, and OG: overgrazing) on soil microbial diversity and community composition in a desert steppe. Results Different microbial communities were found under different grazing intensities, resulting from differences in soil moisture, nutrients and plant species. Alpha-diversity in the bacterial community was strongly correlated with soil organic content (SOC) and soil water content, while the alpha-diversity of the fungi depended on the SOC and pH of the soil. Grazing treatments LG, HG and OG caused strong shifts in bacterial and fungal community composition. Heavy grazing (HG and OG) significantly increased the relative abundances of Chloroflexi, Gemmatimonadetes, and Firmicutes bacteria, while light grazing (LG) significantly decreased the relative abundance of Actinobacteria. Grazing intensities HG and OG increased the relative abundances of certain fungi (e.g., Ascomycota). Co-occurrence network analysis indicated that bacterial communities had a more complex network than fungal communities. A multivariate regression tree demonstrated that the bacterial community responded to grazing via changes in the biomass of perennial plant species and SOC, whereas the SOC and pH value altered the fungal community composition. Conclusions Our findings indicate that different grazing intensities can initiate different changes in the soil microbiome; sustainable grazing intensity over decades facilitates the recovery of primary productivity and ecosystem functions in a desert steppe.
分类号:
- 相关文献
作者其他论文 更多>>
-
CpG adjuvant enhances humoral and cellular immunity against OVA in different degrees in BALB/c, C57BL/6J, and C57BL/6N mice
作者:Chu, Yuanyuan;He, Yuheng;Li, Huanrong;Chu, Yuanyuan;Zhai, Wenzhu;Huang, Ying;Tao, Chunhao;Pang, Zhongbao;Wang, Zhen;Jia, Hong;Zhang, Dekun
关键词:Humoral immunity; Cellular immunity; pUC18-CpG; BALB/c mice; C57BL/6J mice; C57BL/6N mice
-
Graph-based mitochondrial genomes of three foundation species in the Saccharum genus
作者:Li, Sicheng;Wang, Zhen;Yang, Xiping;Li, Sicheng;Wang, Zhen;Yang, Xiping;Jing, Yanfen;Duan, Weixing
关键词:Saccharum; Mitochondrial genome; Repeat-mediated recombination; Phylogenetic
-
Measurement of Fitness and Predatory Ability of Four Predatory Mite Species in Tibetan Plateau under Laboratory Conditions
作者:Xiang, Dong;Wang, Zhen;Zhang, Huanhuan;Xu, Long;Wang, Yunchao;Yang, Kun
关键词:fitness; predatory mites; biological control; spider mite; Tibetan Plateau
-
Increasing Planting Density and Optimizing Irrigation to Improve Maize Yield and Water-Use Efficiency in Northeast China
作者:Shen, Dongping;Zhou, Linli;Fang, Liang;Wang, Zhen;Li, Shaokun;Shen, Dongping;Wang, Keru;Zhou, Linli;Fang, Liang;Wang, Zhen;Fu, Jiale;Zhang, Tingting;Liang, Zhongyu;Xie, Ruizhi;Ming, Bo;Hou, Peng;Xue, Jun;Zhang, Guoqiang;Li, Jianmin;Kang, Xiaojun
关键词:spring maize; varieties; planting density; irrigation; yield; water-use efficiency
-
Replacing dietary alfalfa hay with nettle benefits rumen ph balance and microbiota in rumen and feces with minimal effects on performance and digestibility in dairy cows
作者:Zhang, Qian;Ta, Na;Zhang, Jize;Ding, He;Zhang, Xiaoqing;Zhang, Tenglong
关键词:Cow; Nettle; Rumen fermentation; Gastrointestinal microbiota; Lactation performance; Nutrient digestibility
-
Preventive effect of Cleome spinosa against cucumber Fusarium wilt and improvement on cucumber growth and physiology
作者:Zhang, Xingzhe;Meng, Xianghai;Wang, Baicheng;Yang, Bing;Zhang, Xingzhe;Liu, Dong;Zhang, Yanju;Jiao, Xiaodan;Wang, Zhen;Li, Jiwen;Sa, Rina;Zou, Chunlei
关键词:Cucumber; Fusarium wilt; Cleome spinosa; Disease resistance; ATPase
-
A root cap-localized NAC transcription factor controls root halotropic response to salt stress in Arabidopsis
作者:Zheng, Lulu;Wang, Zhen;Wang, Daoyuan;Jia, Letian;Xie, Yuanming;Xuan, Wei;Zheng, Lulu;Beeckman, Tom;Zheng, Lulu;Beeckman, Tom;Hu, Yongfeng;Yang, Tianzhao;Luo, Long;Han, Yi;Qi, Weicong;Lv, Yuanda
关键词: