Unraveling key genes and pathways involved in Verticillium wilt resistance by integrative GWAS and transcriptomic approaches in Upland cotton

文献类型: 外文期刊

第一作者: Khan, Majid

作者: Khan, Majid;Hu, Daowu;Dai, Shuai;Li, Hongge;Peng, Zhen;He, Shoupu;Du, Xiongming;Geng, Xiaoli;Hu, Daowu;Li, Hongge;Du, Xiongming;Li, Hongge;Peng, Zhen;He, Shoupu;Du, Xiongming;Awais, Muhammad

作者机构:

关键词: Verticillium wilt; GWAS; RNA-seq; DEG; Cotton

期刊名称:FUNCTIONAL & INTEGRATIVE GENOMICS ( 影响因子:3.1; 五年影响因子:3.0 )

ISSN: 1438-793X

年卷期: 2025 年 25 卷 1 期

页码:

收录情况: SCI

摘要: Verticillium dahliae Kleb, the cause of Verticillium wilt, is a particularly destructive soil-borne vascular disease that affects cotton, resulting in serious decline in fiber quality and causing significant losses in cotton production worldwide. However, the progress in identification of wilt-resistance loci or genes in cotton has been limited, most probably due to the highly complex genetic nature of the trait. Nevertheless, the molecular mechanism behind the Verticillium wilt resistance remains poorly understood. In the present study, we investigated the phenotypic variations in Verticillium tolerance and conducted a genome wide association study (GWAS) among a natural population containing 383 accessions of upland cotton germplasm and performed transcriptomic analysis of cotton genotypes with differential responses to Verticillium wilt. GWAS detected 70 significant SNPs and 116 genes associated with resistance loci in two peak signals on D02 and D11 in E1. The transcriptome analysis identified a total of 2689 and 13289 differentially expressed genes (DEGs) among the Verticillium wilt-tolerant (J46) and wilt-susceptible (J11) genotypes, respectively. The DEGs were predominantly enriched in metabolism, plant hormone signal transduction, phenylpropanoid pathway, MAPK cascade pathway and plant-pathogen interaction pathway in GO and KEGG analyses. The identified DEGs were found to comprise several transcription factor (TF) gene families, primarily including AP2/ERF, ZF, WRKY, NAC and MYB, in addition to pentatricopeptide repeat (PPR) proteins and Resistance (R) genes. Finally, by integrating the two results, 34 candidate genes were found to overlap between GWAS and RNA-seq analyses, associated with Verticillium-wilt resistance, including WRKY, MYB, CYP and RGA. This work contributes to our knowledge of the molecular processes underlying cotton responses to Verticillium wilt, offering crucial insights for additional research into the genes and pathways implicated in these responses and paving the way for developing Verticillium wilt-resistant cotton varieties through accelerated breeding by providing a plethora of candidate genes.

分类号:

  • 相关文献
作者其他论文 更多>>