Fine mapping of QTL conferring resistance to calcareous soil in mungbean reveals VrYSL3 as candidate gene for the resistance

文献类型: 外文期刊

第一作者: Lin, Yun

作者: Lin, Yun;Liu, Jinyang;Chen, Jingbin;Yuan, Xingxing;Chen, Xin;Amkul, Kitiya;Laosatit, Kularb;Yimram, Tarika;Somta, Prakit

作者机构:

关键词: Calcareous soil; Iron deficiency chlorosis; Mungbean; GWAS; YSL3; Yellow Stripe -Like

期刊名称:PLANT SCIENCE ( 影响因子:5.2; 五年影响因子:5.7 )

ISSN: 0168-9452

年卷期: 2023 年 332 卷

页码:

收录情况: SCI

摘要: Iron is a crucial nutrient for biological functions in plants. High-pH and calcareous soil is a major stress causing iron deficiency chlorosis (IDC) symptoms and yield losses in crops. Use of calcareous soil-tolerance genetic resources is the most effective preventative method to combat the effects of high-pH and calcareous soils. A previous study using a mungbean recombinant inbred line (RIL) population of the cross Kamphaeg Saen 2 (KPS2; IDC susceptible) x NM-10-12 identified a major quantitative trait locus (QTL), qIDC3.1, which controls resistance and explains more than 40% of IDC variation. In this study, we fine-mapped qIDC3.1 and identified an underlying candidate gene. A genome wide association analysis (GWAS) using 162 mungbean accessions identified single nucleotide polymorphisms (SNPs) on chromosome 6; several SNPs were associated with soil plant analysis development (SPAD) values and IDC visual scores of mungbeans planted on calcareous soil, respectively. These SNPs corresponded to qIDC3.1. Using the same RIL population as in the previous study and an advanced backcross population developed from KPS2 and IDC-resistant inbred line RIL82, qIDC3.1 was further confirmed and fine-mapped to an interval of 217 kilobases harboring five predicted genes, including LOC106764181 (VrYSL3), which encodes a yellow stripe1-like-3 (YSL3) protein, YSL3 is involved in iron deficiency resistance. Gene expression analysis revealed that VrYSL3 was highly expressed in mungbean roots. In calcareous soil, expression of VrYSL3 was significantly up-regulated, and it was more obviously upregulated in the roots of RIL82, than in those of KPS2. Sequence comparison of VrYSL3 between the RIL82 and KPS2 revealed four SNPs that result in amino acid changes in the VrYSL3 protein and a 20-bp insertion/deletion in the promoter where a cis-regulatory element resides. Transgenic Arabidopsis thaliana plants overexpressing VrYSL3 showed enhanced iron and zinc contents in the leaves. Taken together, these results indicate that VrYSL3 is a strong candidate gene responsible for calcareous soil resistance in mungbean.

分类号:

  • 相关文献
作者其他论文 更多>>