Quantitative determination of soybean meal content in compound feeds: comparison of near-infrared spectroscopy and real-time PCR

文献类型: 外文期刊

第一作者: Li, Hui

作者: Li, Hui;Lv, Xiaowen;Wang, Jing;Li, Junguo;Yang, Haifeng;Qin, Yuchang

作者机构:

关键词: near-infrared spectroscopy;real-time PCR;soybean meal;determination;POLYMERASE-CHAIN-REACTION;REFLECTANCE SPECTROSCOPY;BONE MEAL;PLANTS;MAIZE;QUANTIFICATION;IDENTIFICATION;ADULTERATION;TRACEABILITY;AUTHENTICITY

期刊名称:ANALYTICAL AND BIOANALYTICAL CHEMISTRY ( 影响因子:4.142; 五年影响因子:3.863 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Standard methods for determining the raw material content of compound feed are little exploited, except for the identification of meat and bone meal in feeds. In this work, near-infrared (NIR) spectroscopy and real-time polymerase chain reaction (PCR) were applied in order to establish new and fast methods for quantification of soybean meal content in compound feeds. The best prediction quality was achieved by using a model based on NIR spectroscopy (R-2=0.9857, standard error of cross-validation 1.1065). Furthermore, a sensitive qualitative detection method by using the real-time PCR was developed (R-2 =0.976, slope -3.7599). Finally, the differences between the real- time PCR result and the NIR spectroscopy result for a given sample were also treated, and we found that the NIR spectroscopy method provided quite accurate results which approach closely those of the real-time PCR method.

分类号: O65

  • 相关文献

[1]Estimating number of transgene copies in transgenic rapeseed by real-time PCR assay with HMG I/Y as an endogenous reference gene. Weng, H,Pan, AH,Yang, LT,Zhang, CM,Liu, ZL,Zhang, DB.

[2]Identification of quantitative trait loci for leaf area and chlorophyll content in maize (Zea mays) under low nitrogen and low phosphorus supply. Cai, Hongguang,Chu, Qun,Yuan, Lixing,Liu, Jianchao,Chen, Xiaohui,Chen, Fanjun,Mi, Guohua,Zhang, Fusuo,Cai, Hongguang.

[3]Rapid prediction of acid detergent fiber, neutral detergent fiber, and acid detergent lignin of rice materials by near-infrared spectroscopy. Kong, XL,Xie, JK,Wu, XL,Huang, YJ,Bao, JS.

[4]Recent advancements in detecting sugar-based adulterants in honey - A challenge. Wu, Liming,Du, Bing,Chen, Lanzhen,Zhao, Liuwei,Wang, Miao,Xue, Xiaofeng,Wu, Liming,Chen, Lanzhen,Wang, Miao,Xue, Xiaofeng,Wu, Liming,Chen, Lanzhen,Wang, Miao,Xue, Xiaofeng,Vander Heyden, Yvan.

[5]Determination of Melamine in Soybean Meal by Near-Infrared Imaging and Chemometrics. Li, Qingbo,Kang, Xue,Shi, Dongdong,Liu, Qingsheng.

[6]Determination of jasmonic acid in bark extracts from Hevea brasiliensis by capillary electrophoresis with laser-induced fluorescence detection. Zhang, ZL,Liu, X,Li, DF,Lu, YT.

[7]Isolation and characterization of glyphosate-regulated genes in soybean seedlings. Yu, Wancong,Zhang, Rui,Li, Runzhi,Guo, Sandui.

[8]Quantitative detection of the rice false smut pathogen Ustilaginoidea virens by real-time PCR. Li, H.,Ni, D. H.,Li, J.,Li, H.,Ni, D. H.,Duan, Y. B.,Li, J.,Song, F. S.,Li, L.,Wei, P. C.,Yang, J. B.,Li, H.,Wei, P. C.,Duan, Y. B.,Song, F. S.,Chen, Y.. 2013

[9]Detection and quantification of Rhizoctonia cerealis in soil using real-time PCR. Guo, Yingpeng,Li, Wei,Sun, Haiyan,Wang, Ning,Chen, Huaigu,Guo, Yingpeng,Yu, Hanshou. 2012

[10]Quantification of Fishmeal in Compound Feed Using NIR Spectroscopy. Lv, Xiaowen,Li, Hui,Dong, Yingchao,Li, Junguo,Qin, Yuchang,Lv, Xiaowen,Li, Hui,Wang, Jing,Qin, Yuchang.

[11]Determination of Geographical Origin of Beef Based on FTIR Spectroscopy Analysis. Li Yong,Wei Yi-min,Pan Jia-rong,Guo Bo-li. 2009

[12]Validation of origins of tea samples using partial least squares analysis and Euclidean distance method with near-infrared spectroscopy data. He, Wei,Cheng, Hao,Li, Xinghui,Zhou, Jian,Cheng, Hao,Wang, Liyuan,Wei, Kang,Wang, Weifeng.

[13]QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Fu-Ding Sun,Jian-Hong Zhang,Shu-Fang Wang,Wan-Kui Gong,Yu-Zhen Shi,Ai-Ying Liu,Jun-Wen Li,Ju-Wu Gong,Hai-Hong Shang,You-Lu Yuan.

[14]Two compounds from allelopathic rice accession and their inhibitory activity on weeds and fungal pathogens. Xu, XH,Zhou, B,Hu, F,Zhang, CX,Zhang, MX.

[15]Fine mapping and candidate gene analysis of hwh1 and hwh2, a set of complementary genes controlling hybrid breakdown in rice. Jiang, Wenzhu,Chu, Sang-Ho,Piao, Rihua,Lee, Joohyun,Qiao, Yongli,Koh, Hee-Jong,Jiang, Wenzhu,Chu, Sang-Ho,Piao, Rihua,Lee, Joohyun,Qiao, Yongli,Koh, Hee-Jong,Chin, Joong-Hyoun,Jin, Yong-Mei,Jin, Yong-Mei,Han, Longzhi,Piao, Zongze.

[16]Identification and validation of a core set of microsatellite markers for genetic diversity analysis in watermelon, Citrullus lanatus Thunb. Matsum. & Nakai. Zhang, Haiying,Wang, Hui,Guo, Shaogui,Ren, Yi,Gong, Guoyi,Xu, Yong,Weng, Yiqun.

[17]Development of a qualitative real-time PCR method to detect 19 targets for identification of genetically modified organisms. Peng, Cheng,Xu, Xiaoli,Wang, Xiaofu,Wei, Wei,Chen, Xiaoyun,Xu, Junfeng,Peng, Cheng,Xu, Xiaoli,Wang, Xiaofu,Wei, Wei,Chen, Xiaoyun,Xu, Junfeng,Wang, Pengfei. 2016

[18]Relationships between soil respiration and photosynthesis-related spectral vegetation indices in two cropland ecosystems. Huang, Ni,Niu, Zheng,Zhan, Yulin,Xu, Shiguang,Wu, Chaoyang,Gao, Shuai,Hou, Xuehui,Cai, Dewen,Huang, Ni,Xu, Shiguang,Hou, Xuehui,Cai, Dewen,Tappert, Michelle C.,Huang, Wenjiang.

[19]Molecular Mapping of the Major Resistance Quantitative Trait Locus qHS2.09 with Simple Sequence Repeat and Single Nucleotide Polymorphism Markers in Maize. Weng, Jianfeng,Hao, Zhuanfang,Xie, Chuanxiao,Li, Mingshun,Zhang, Degui,Bai, Li,Liu, Changlin,Zhang, Shihuang,Li, Xinhai,Liu, Xianjun,Wang, Zhenhua,Zhang, Lin,Wang, Jianjun.

[20]Factors limiting photosynthetic recovery in sweet pepper leaves after short-term chilling stress under low irradiance. Li, XG,Wang, XM,Meng, QW,Zou, Q.

作者其他论文 更多>>