Expression of a calcineurin gene improves salt stress tolerance in transgenic rice

文献类型: 外文期刊

第一作者: Ma, XJ

作者: Ma, XJ;Qian, Q;Zhu, DH

作者机构:

关键词: calcineurin;rice;salt;stress tolerance;CA2+-DEPENDENT PROTEIN-KINASE;VACUOLAR ION-CHANNEL;B-LIKE PROTEINS;SIGNAL-TRANSDUCTION;ABSCISIC-ACID;HIGHER-PLANTS;CALCIUM SENSORS;PHOSPHATASE 2C;ABIOTIC STRESS;NA+ TRANSPORT

期刊名称:PLANT MOLECULAR BIOLOGY ( 影响因子:4.076; 五年影响因子:4.89 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Calcineurin is a Ca2+- and calmodulin-dependent serine/threonine phosphatase and has multiple functions in animal cells including regulating ion homeostasis. We generated transgenic rice plants that not only expressed a truncated form of the catalytic subunit of mouse calcineurin, but also were able to grow and fertilize normally in the field. Notably, the expression of the mouse calcineurin gene in rice resulted in its higher salt stress tolerance than the non-transgenic rice. Physiological studies have indicated that the root growth of transgenic plants was less inhibited than the shoot growth, and that less Na+ was accumulated in the roots of transgenic plants after a prolonged period of salt stress. These findings imply that the heterologous calcineurin plays a significant role in maintaining ion homeostasis and the integrity of plant roots when exposed to salt. In addition, the calcineurin gene expression in the stems of transgenic plants correlated with the increased expression of the Rab16A gene that encodes a group 2-type late-embryogenesis-abundant (LEA) protein. Altogether our findings provide the first genetic and physiological evidence that expression of the mouse calcineurin protein functionally improves the salt stress tolerance of rice partly by limiting Na+ accumulation in the roots.

分类号: Q946

  • 相关文献

[1]Gene expression analyses of ZmPti1, encoding a maize Pti-like kinase, suggest a role in stress signaling. Zou, HW,Wu, ZY,Yang, Q,Zhang, XH,Cao, MQ,Jia, WS,Huang, CL,Xiao, X.

[2]Isolation and functional characterization of HvDREB1-a gene encoding a dehydration-responsive element binding protein in Hordeum vulgare. Xu, Zhao-Shi,Ni, Zhi-Yong,Li, Zhi-Yong,Li, Lian-Cheng,Chen, Ming,Gao, Dong-Yao,Yu, Xiu-Dao,Liu, Pei,Ma, You-Zhi.

[3]Co-expression and preferential interaction between two calcineurin B-like proteins and a CBL-interacting protein kinase from cotton. Gao, Peng,Zhao, Pi-Ming,Wang, Juan,Wang, Hai-Yun,Wang, Gui-Ling,Xia, Gui-Xian,Gao, Peng,Zhao, Pi-Ming,Wang, Juan,Wang, Hai-Yun,Wang, Gui-Ling,Xia, Gui-Xian,Du, Xiong-Ming.

[4]Expression of a novel OSPGYRP (rice proline-, glycine- and tyrosine-rich protein) gene, which is involved in vesicle trafficking, enhanced cold tolerance in E-coli. Li, Hui,Yang, Jing,Wang, Yayu,Tu, Sansi,Zhu, Yingguo,Li, Yangsheng,Chen, Zhijun,Feng, Lingling. 2009

[5]A wheat (Triticum aestivum) protein phosphatase 2A catalytic subunit gene provides enhanced drought tolerance in tobacco. Xu, Chongyi,Jing, Ruilian,Mao, Xinguo,Jia, Xiaoyun,Chang, Xiaoping.

[6]Transcriptional Modulation of Ethylene Response Factor Protein JERF3 in the Oxidative Stress Response Enhances Tolerance of Tobacco Seedlings to Salt, Drought, and Freezing. Wu, Lijun,Zhang, Zhijin,Zhang, Haiwen,Huang, Rongfeng,Wu, Lijun,Wang, Xue-Chen,Wu, Lijun,Zhang, Zhijin,Zhang, Haiwen,Huang, Rongfeng,Wu, Lijun,Zhang, Zhijin,Zhang, Haiwen,Huang, Rongfeng.

[7]Expression pattern of diacylglycerol acyltransferase-1, an enzyme involved in triacylglycerol biosynthesis, in Arabidopsis thaliana. Lu, CFL,de Noyer, SB,Hobbs, DH,Kang, JL,Wen, YC,Krachtus, D,Hills, MJ.

[8]Water stress induces in pear leaves the rise of betaine level that is associated with drought tolerance in pear. Gao, XP,Yan, JY,Liu, EK,Shen, YY,Lu, YF,Zhang, DP.

[9]AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Xu, Jing,Tian, Yong-Sheng,Peng, Ri-He,Xiong, Ai-Sheng,Zhu, Bo,Jin, Xiao-Fen,Gao, Feng,Fu, Xiao-Yan,Yao, Quan-Hong,Xu, Jing,Hou, Xi-Lin. 2010

[10]Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Xu, Zhao-Shi,Xia, Lan-Qin,Chen, Ming,Cheng, Xian-Guo,Zhang, Rui-Yue,Li, Lian-Cheng,Zhao, Yun-Xiang,Lu, Yan,Ni, Zhi-Yong,Liu, Li,Qiu, Zhi-Gang,Ma, You-Zhi.

[11]Effect of mouse calcineurin on induction and growth of rice callus transformed by the calcineurin gene. Ma, Xujun,Qian, Qian,Yang, Chuanping,Liu, Guifeng,Zhu, Dahai. 2006

[12]Isolated and characterization of a cDNA encoding ethylene-responsive element binding protein (EREBP)/AP2-type protein, RCBF2, in Oryza sativa L.. Liu, Jin-Ge,Zhang, Zhen,Qin, Qiu-Lin,Peng, Ri-He,Xiong, Ai-Sheng,Chen, Jian-Min,Xu, Fang,Zhu, Hong,Yao, Quan-Hong.

[13]Microcystin-RR-induced accumulation of reactive oxygen species and alteration of antioxidant systems in tobacco BY-2 cells. Yin, LY,Huang, JQ,Huang, WM,Li, DH,Wang, GH,Liu, YD.

[14]A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis. Lu, Min,Ying, Sheng,Zhang, Deng-Feng,Shi, Yun-Su,Song, Yan-Chun,Wang, Tian-Yu,Li, Yu. 2012

[15]Recent Advances in Utilizing Transcription Factors to Improve Plant Abiotic Stress Tolerance by Transgenic Technology. Wang, Hongyan,Wang, Honglei,Shao, Hongbo,Shao, Hongbo,Tang, Xiaoli. 2016

[16]Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis. Ying, Sheng,Zhang, Deng-Feng,Fu, Jing,Shi, Yun-Su,Song, Yan-Chun,Wang, Tian-Yu,Li, Yu,Ying, Sheng,Fu, Jing. 2012

[17]Expression of SbSNAC1, a NAC transcription factor from sorghum, confers drought tolerance to transgenic Arabidopsis. Lu, Min,Zhang, Deng-Feng,Shi, Yun-Su,Song, Yan-Chun,Wang, Tian-Yu,Li, Yu,Lu, Min.

[18]Transgenic rice expressing a cassava (Manihot esculenta Crantz) plasma membrane gene MePMP3-2 exhibits enhanced tolerance to salt and drought stresses. Yu, Y.,Cui, Y. C.,Ren, C.,Rocha, P. S. C. F.,Wang, M. L.,Xia, X. J.,Yu, Y.,Ren, C.,Peng, M.,Xu, G. Y.. 2016

[19]Overexpression of a glyoxalase gene, OsGly I, improves abiotic stress tolerance and grain yield in rice (Oryza sativa L.). Xiong, Fangjie,Yu, Xiaohong,Gong, Xiaoping,Liu, Yongsheng,Luo, Juntao,Jiang, Yudong,Kuang, Haochi,Gao, Bijun,Niu, Xiangli,Liu, Yongsheng,Liu, Yongsheng.

[20]Priming of rice (Oryza sativa L.) seedlings with abscisic acid enhances seedling survival, plant growth, and grain yield in saline-alkaline paddy fields. Wei, Li-Xing,Lv, Bing-Sheng,Li, Xiao-Wei,Wang, Ming-Ming,Ma, Hong-Yuan,Yang, Hao-Yu,Liang, Zheng-Wei,Ma, Hong-Yuan,Yang, Hao-Yu,Yang, Rui-Fang,Liang, Zheng-Wei,Liang, Zheng-Wei,Wei, Li-Xing,Wang, Zhi-Hua,Lou, Jin-Hua,Lv, Bing-Sheng,Yang, Rui-Fang,Piao, Zhong-Ze,Jiang, Chang-Jie.

作者其他论文 更多>>