Genetic Relationships Among Five Basic Genomes St, E, A, B and D in Triticeae Revealed by Genomic Southern and in situ Hybridization

文献类型: 外文期刊

第一作者: Liu, Zhao

作者: Liu, Zhao;Li, Dayong;Zhang, Xueyong

作者机构:

关键词: E genome;fluorescent in situ hybridization;genomic in situ hybridization;perennial Triticeae;St genome;wheat

期刊名称:JOURNAL OF INTEGRATIVE PLANT BIOLOGY ( 影响因子:7.061; 五年影响因子:6.002 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The St and E are two important basic genomes in the perennial tribe Triticeae (Poaceae). They exist in many perennialspecies and are very closely related to the A, B and D genomes of bread wheat (Triticum aestivum L). Genomic Southernhybridization and genomic in situ hybridization (GISH) were used to analyze the genomic relationships between the twogenomes (St and E) and the three basic genomes (A, B and D) of T. aestivum. The semi-quantitative analysis of the Southernhybridization suggested that both St and E genomes are most closely related to the D genome, then the A genome, andrelatively distant to the B genome. GISH analysis using St and E genomic DNA as probes further confirmed the conclusion.St and E are the two basic genomes of Thinopyrum ponticum (StStE~eE~bE~x) and Th. intermedium (StE~6E~b), two perennialspecies successfully used in wheat improvement. Therefore, this paper provides a possible answer as to why most of thespontaneous wheat-Thinopyrum translocations and substitutions usually happen in the D genome, some in the A genomeand rarely in the B genome. This would develop further use of alien species for wheat improvement, especially thosecontaining St or E in their genome components.

分类号: Q94

  • 相关文献

[1]Primary investigation on GISH-NOR in cotton. Liu, SH,Wang, KB,Song, GL,Wang, CY,Liu, F,Li, SH,Zhang, XD,Wang, YH.

[2]Molecular cytogenetic analysis of intergeneric chromosomal translocations between wheat (Triticum aestivum L.) and Dasypyrum villosum arising from tissue culture. Li, HJ,Guo, BH,Li, YW,Du, LQ,Jia, X,Chu, CC. 2000

[3]Characterization of a partial amphiploid between Triticum aestivum cv. Chinese Spring and Thinopyrum intermedium ssp trichophorum. Yang, ZJ,Li, GR,Chang, ZJ,Zhou, JP,Ren, ZL. 2006

[4]Visualization of Oryza eichingieri chromosomes in intergenomic hybrid plants from O-sativa x O-eichingeri via fluorescent in situ hybridization. Yan, HH,Min, SK,Zhu, LH. 1999

[5]Identification of a germ cell marker gene, the dead end homologue, in Chinese sturgeon Acipenser sinensis. Yang Xiaoge,Ye Huan,Wei Qiwei,Yang Xiaoge,Yue Huamei,Ye Huan,Li Chuangju,Wei Qiwei,Yue Huamei,Li Chuangju,Wei Qiwei.

[6]A genome-specific repetitive DNA sequence from Oryza eichingeri: characterization, localization, and introgression to O-sativa. Yan, HH,Liu, GQ,Cheng, ZK,Li, XB,Liu, GZ,Min, SK,Zhu, LH. 2002

[7]Divergence between C-melo and African Cucumis Species Identified by Chromosome Painting and rDNA Distribution Pattern. Li, Kunpeng,Sun, Jianying,Li, Zongyun,Han, Yonghua,Wang, Huaisong,Wang, Jiming.

[8]Identification and characterization of a LTR retrotransposon from the genome of Cyprinus carpio var. Jian. Cao, Liping,Yin, Guojun,Cao, Zheming,Bing, Xuwen,Ding, Weidong.

[9]Characterization of eleven monosomic alien addition lines added from Gossypium anomalum to Gossypium hirsutum using improved GISH and SSR markers. Wang, Xiaoxiao,Wang, Yingying,Wang, Chen,Chen, Yu,Chen, Yu,Feng, Shouli,Zhao, Ting,Zhou, Baoliang,Chen, Yu. 2016

[10]Inducement and identification of chromosome introgression and translocation of Gossypium australe on Gossypium hirsutum. Wang, Yingying,Feng, Shouli,Li, Sai,Tang, Dong,Chen, Yu,Chen, Yu,Zhou, Baoliang,Chen, Yu,Chen, Yu. 2018

[11]Resistance to eyespot of wheat, caused by Tapesia yallundae, derived from Thinopyrum intermedium homoeologous group 4 chromosome. Li, HJ,Arterburn, M,Jones, SS,Murray, TD. 2005

[12]Variation of B Chromosome Associated with Tissue Culture in Wheat-rye Cross. Li, Hongjie,Tian, Bohong. 2009

[13]Induction and transmission of wheat-Haynaldia villosa chromosomal translocations. Cao, Yaping,Bie, Tongde,Wang, Xiue,Chen, Peidu,Cao, Yaping,Bie, Tongde. 2009

[14]Chromosome elimination, addition and introgression in intertribal partial hybrids between Brassica rapa and Isatis indigotica. Tu, Yuqin,Sun, Jian,Ge, Xianhong,Li, Zaiyun,Sun, Jian.

[15]Microdissection of Haynaldia villosa Telosome 6VS and Cloning of Species-specific DNA Sequences. Kong, FJ,Chen, X,Ma, YZ,Xin, ZY,Li, LC,Zhang, ZY,Lin, ZS.

[16]A novel genome of C and the first autotetraploid species in the Setaria genus identified by genomic in situ hybridization. Wang, Yongqiang,Zhi, Hui,Li, Wei,Li, Haiquan,Wang, Yongfang,Diao, Xianmin,Wang, Yongfang,Huang, Zhanjing,Diao, Xianmin,Zhi, Hui,Diao, Xianmin.

[17]Identification of wheat-Thinopyrum intermedium 2Ai-2 ditelosomic addition and substitution lines with resistance to barley yellow dwarf virus. Lin, ZS,Huang, DH,Du, LP,Ye, XG,Xin, ZY. 2005

[18]Genomic in situ hybridization (GISH) discriminates between the A and the B genomes in diploid and tetraploid Setaria species. Benabdelmouna, A,Shi, Y,Abirached-Darmency, M,Darmency, H. 2001

[19]Introgression of resistance to powdery mildew conferred by chromosome 2R by crossing wheat nullisomic 2D with rye. An, Diao-Guo,Li, Li-Hui,Li, Jun-Ming,Li, Hong-Jie,Zhu, Yong-Guan. 2006

[20]Molecular characterization of a wheat - Thinopyrum ponticum partial amphiploid and its derivatives for resistance to leaf rust. Li, HJ,Chen, O,Conner, RL,Guo, BH,Zhang, YM,Graf, RJ,Laroche, A,Jia, X,Liu, GS,Chu, CC. 2003

作者其他论文 更多>>