Optimization of yield and water-use of different cropping systems for sustainable groundwater use in North China Plain

文献类型: 外文期刊

第一作者: Sun, Qinping

作者: Sun, Qinping;Cui, Zhenling;Zhang, Fusuo;Chen, Xinping;Sun, Qinping;Kroebel, Roland;Mueller, Torsten;Roemheld, Volker

作者机构:

关键词: Groundwater balance;Double cropping systems;Irrigation water utilization efficiency;North China Plain

期刊名称:AGRICULTURAL WATER MANAGEMENT ( 影响因子:4.516; 五年影响因子:5.12 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: a- Field experiments with four cropping systems were conducted for sustainable groundwater using. a- The wheat/maize rotation over used groundwater under optimized irrigation condition. a- The new cropping systems improved the WUE, but with the yields decreasing. a- The high yielding maize was expected to be dominant system in a long term. A groundwater crisis is going on in the North China Plain (NCP), due to the excessive water consumption of the traditional winter wheat (WW)/summer maize (SM) double cropping system (two harvests in one year). In order to improve the water use efficiency in this particular cropping system and to evaluate the sustainability of water usage in Chinese agroecosystems, two field experiments were conducted from October 2004 to September 2006 at two sites of the North China Plain. The field experiments included four treatments: (1) farmers' practice (FP) with two harvests in one year (WW/SM rotation), (2) FP with reduced input (RI) of water and nitrogen (WW/SM rotation), (3) three harvests in two years (TW, 1st year: WW/SM; 2nd year: spring maize), and (4) continuous spring-maize monoculture (CS) with one harvest per year (spring maize). In the treatments RI, TW and CS, the amount and timing of irrigation and nitrogen fertilization was optimized using TDR based soil moisture measurements and the Nmin-method, respectively. Data showed that the utilization efficiency of irrigation water can be improved by optimizing soil water management compared to the traditional water management (FP). However, the groundwater net consumption required for RI still surpassed 300mmyra degree 1. Both FP and RI, still overused groundwater resources. The groundwater consumption in the continuous spring maize (CS) was on average 139mmyra degree 1. Therefore, the CS system can show the potential to use groundwater sustainably in the long term. Water usage of the TW treatment was in between the water usage of the other treatments. The grain yields in the double cropping systems (FP and RI) were higher than that in the two other systems (TW and CS). But the CS treatment showed the higher W UE than others.

分类号: S2

  • 相关文献

[1]Mapping drought status of winter wheat from MODIS data in North China Plain. Gao, Lei,Qin, Zhihao,Lu, Liping,Pei, Huan,Qin, Zhihao,Xu, Bin. 2007

[2]Evaluation of a New Nutrient Management Method in Green House Gas Emission Reduction for Winter Wheat in the North China Plain. Sun, Yan-ming,Jia, Liang-liang,Han, Bao-wen,Liu, Meng-chao. 2014

[3]Role of crop residue management in sustainable agricultural development in the North China Plain. Wu, Wenliang,Zhang, Qingzhong,Yang, Zhengli. 2008

[4]Fate of labeled urea-N-15 as basal and topdressing applications in an irrigated wheat-maize rotation system in North China plain: II summer maize. Yang, Yunma,Wang, Xiaobin,Dai, Kuai,Zhao, Quansheng,Zhang, Xiaoming,Zhang, Dingchen,Feng, Zonghui,Wu, Xueping,Cai, Dianxiong,Yang, Yunma,Wang, Xiaobin,Dai, Kuai,Zhao, Quansheng,Zhang, Xiaoming,Zhang, Dingchen,Feng, Zonghui,Wu, Xueping,Cai, Dianxiong,Yang, Yunma,Jia, Shulong,Meng, Chunxiang,Sun, Yanming,Grant, Cynthia.

[5]Relationships between drought disasters and crop production during ENSO episodes across the North China Plain. Liu, Yuan,Liu, Buchun,Yang, Xiaojuan,Bai, Wei,Wang, Jian,Liu, Yuan,Liu, Buchun,Yang, Xiaojuan,Bai, Wei,Wang, Jian,Wang, Jian.

[6]Impact of climate warming on drought characteristics of summer maize in North China Plain for 1961-2010. Hu, Yanan,Li, Zhengguo,Liu, Yingjie. 2014

[7]SPEIPM-based research on drought impact on maize yield in North China Plain. Ming Bo,Guo Yin-qiao,Liu Guang-zhou,Li Shao-kun,Ming Bo,Tao Hong-bin,Wang Pu. 2015

[8]The causes and impacts for heat stress in spring maize during grain filling in the North China Plain - A review. Tao Zhi-qiang,Chen Yuan-quan,Zou Juan-xiu,Yan Peng,Yuan Shu-fen,Wu Xia,Sui Peng,Tao Zhi-qiang,Li Chao. 2016

[9]Climate and crop yields impacted by ENSO episodes on the North China Plain: 1956-2006. Liu, Yuan,Liu, Yuan,Liu, Yuan,Yang, Xiaoguang,Wang, Enli,Xue, Changying.

[10]Applicability of an Agro-hydrological Model (SMCR_N) in Simulating the Yield and Nitrate Dynamics of Eggplant in North China Plain. Dong, Yiwei,Li, Qiaozhen,Fang, Fuli,Li, Yuzhong,Xu, Chunying,Dong, Yiwei,Zhu, Dazhou. 2012

[11]Fate of N-15-labeled urea under a winter wheat-summer maize rotation on the North China Plain. Ju Xiao-Tang,Liu Xue-Jun,Pan Jia-Rong,Zhang Fu-Suo. 2007

[12]Estimation of regional crop yield by assimilating multi-temporal TM images into crop growth model. Yang, Peng,Zhou, Qingbo,Chen, Zhongxin,Zha, Yan,Wu, Wenbin,Shibasaki, Ryosuke. 2006

[13]Fate of labeled urea-N-15 as basal and topdressing applications in an irrigated wheat-maize rotation system in North China Plain: I winter wheat. Jia, Shulong,Wang, Xiaobin,Dai, Kuai,Zhao, Quansheng,Zhang, Xiaoming,Zhang, Dingchen,Feng, Zonghui,Wu, Xueping,Cai, Dianxiong,Jia, Shulong,Wang, Xiaobin,Dai, Kuai,Zhao, Quansheng,Zhang, Xiaoming,Zhang, Dingchen,Feng, Zonghui,Wu, Xueping,Cai, Dianxiong,Jia, Shulong,Yang, Yunma,Meng, Chunxiang,Sun, Yanming,Grant, Cynthia.

[14]Relationship between soil inorganic carbon and organic carbon in the wheat-maize cropland of the North China Plain. Shi, H. J.,Wang, X. J.,Li, D. W.,Guo, Y.,Zhao, Y. J.,Xu, M. G..

[15]Accuracy of root modeling and its potential impact on simulation of grain yield of wheat. Zhao, Zhigan,Xue, Lihua,Wu, Yongcheng,Zhang, Jingting,Wang, Zhimin,Zhao, Zhigan,Wang, Enli,Xue, Lihua,Zhang, Jingting. 2013

[16]Winter wheat grain yield and its components in the North China Plain: irrigation management, cultivation, and climate. Lv, Lihua,Yao, Yanrong,Zhang, Lihua,Jia, Xiuling,Liang, Shuangbo. 2013

[17]Is highly intensive agriculture environmentally sustainable? A case study from Fugou County, China. Tang, HJ,van Ranst, E. 2005

[18]Tillage effects on carbon footprint and ecosystem services of climate regulation in a winter wheat-summer maize cropping system of the North China Plain. Zhang, Xiang-Qian,Pu, Chao,Zhao, Xin,Xue, Jian-Fu,Zhang, Ran,Chen, Fu,Zhang, Hai-Lin,Zhang, Xiang-Qian,Nie, Zi-Jin,Lal, Rattan.

[19]Comparison of artificial intelligence and empirical models for estimation of daily diffuse solar radiation in North China Plain. Feng, Yu,Cui, Ningbo,Zhang, Qingwen,Zhao, Lu,Feng, Yu,Cui, Ningbo,Zhang, Qingwen,Zhao, Lu,Feng, Yu,Gong, Daozhi.

[20]Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain. Ju, XT,Kou, CL,Zhang, FS,Christie, P.

作者其他论文 更多>>