Cloning and characterization of a maize SnRK2 protein kinase gene confers enhanced salt tolerance in transgenic Arabidopsis

文献类型: 外文期刊

第一作者: Ying, Sheng

作者: Ying, Sheng;Zhang, Deng-Feng;Li, Hui-Yong;Liu, Ying-Hui;Shi, Yun-Su;Song, Yan-Chun;Wang, Tian-Yu;Li, Yu;Ying, Sheng;Li, Hui-Yong;Liu, Ying-Hui

作者机构:

关键词: proline: 609-36-9;manganese ion: cofactor;magnesium ion: 22537-22-0;cofactor;SAPK8 protein: phosphorylation;serine-128;threonine-183;activation loop;genome;survival rate;electrolyte leakage;germination rate;growth and development;salt stress tolerance;protein subcellular localization;drought treatment;transgenic breeding;diverse stress signal transduction

期刊名称:PLANT CELL REPORTS ( 影响因子:4.57; 五年影响因子:4.463 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: SnRK2 (sucrose non-fermenting 1-related protein kinases 2) represents a unique family of protein kinase in regulating signaling transduction in plants. Although the regulatory mechanisms of SnRK2 have been well demonstrated in Arabidopsis thaliana, their functions in maize are still unknown. In our study, we cloned an SnRK2 gene from maize, ZmSAPK8, which encoded a putative homolog of the rice SAPK8 protein. ZmSAPK8 had two copies in the maize genome and harbored eight introns in its coding region. We demonstrated that ZmSAPK8 expressed differentially in various organs of maize plants and was up-regulated by high-salinity and drought treatment. A green fluorescent protein (GFP)-tagged ZmSAPK8 showed subcellular localization in the cell membrane, cytoplasm and nucleus. In vitro kinase assays indicated that ZmSAPK8 preferred Mn2+ to Mg2+ as cofactor for phosphorylation, and Ser-182 and Thr-183 in activation loop was important for its activity. Heterologous overexpression of ZmSAPK8 in Arabidopsis could significantly strengthen tolerance to salt stress. Under salt treatment, ZmSAPK8-overexpressed transgenic plants exhibited higher germination rate and proline content, low electrolyte leakage and higher survival rate than wild type. Further analysis indicated that transgenic plants showed increased transcription of the stress-related genes, RD29A, RD29B, RAB18, ABI1, DREB2A and P5CS1, under high-salinity conditions. The results demonstrated that ZmSAPK8 was involved in diverse stress signal transduction. Moreover, no obvious adverse effects on growth and development in the ZmSAPK8-overexpressed transgenic plants implied that ZmSAPK8 was potentially useful in transgenic breeding to improve salt tolerance in crops.

分类号: Q942

  • 相关文献

[1]Yield benefit and underlying cost of insect-resistance transgenic rice: Implication in breeding and deploying transgenic crops. Xia, Hui,Chen, Liangyan,Lu, Bao-Rong,Wang, Feng,Chen, Liangyan.

[2]Characterization of a Glucose-, Xylose-, Sucrose-, and d-Galactose-Stimulated beta-Glucosidase from the Alkalophilic Bacterium Bacillus halodurans C-125. Xu, Hu,Chen, Jian-Min,Xu, Hu,Xiong, Ai-Sheng,Zhao, Wei,Tian, Yong-Sheng,Peng, Ri-He,Yao, Quan-Hong.

[3]Expression of tomato SlTIP2;2 enhances the tolerance to salt stress in the transgenic Arabidopsis and interacts with target proteins. Xin, Shichao,Yu, Guohong,Qiang, Xiaojing,Xu, Na,Cheng, Xianguo,Sun, Linlin.

[4]G-protein beta subunit AGB1 positively regulates salt stress tolerance in Arabidopsis. Ma Ya-nan,Xu Dong-bei,Fang Guang-ning,Wang Er-hui,Zhang Xiao-hong,Min Dong-hong,Ma Ya-nan,Chen Ming,Xu Zhao-shi,Li Lian-cheng,Ma You-zhi,Gao Shi-qing. 2015

[5]Rootstocks influence fruit oleocellosis in 'Hamlin' sweet orange (Citrus sinensis L. Osbeck). Zheng, Yongqiang,Deng, Lie,He, Shaolan,Yi, Shilai,Zheng, Yongqiang,Zhou, Zhiqin,Zhao, Xuyang,Wang, Liang.

[6]Overexpression of a novel soybean gene modulating Na plus and K plus transport enhances salt tolerance in transgenic tobacco plants. Chen, Huatao,He, Hui,Yu, Deyue,Chen, Huatao.

[7]Effect of methyl jasmonate treatment on fruit decay and quality in peaches during storage at ambient temperature. Jin, P.,Zheng, Y. H.,Cheng, C. M.,Gao, H. Y.,Chen, W. X.,Chen, H. J.. 2006

[8]Effects of heat treatment on internal browning and membrane fatty acid in loquat fruit in response to chilling stress. Rui, Huaijing,Shang, Haitao,Jin, Peng,Wang, Kaituo,Zheng, Yonghua,Cao, Shifeng.

[9]Transformation with a gene for myo-inositol O-methyltransferase enhances the cold tolerance of Arabidopsis thaliana. Zhu, B.,Cai, R.,Zhu, B.,Peng, R. -H.,Xiong, A. -S.,Fu, X. -Y.,Zhao, W.,Jin, X. -F.,Yao, Q. -H.,Xu, J.,Gao, J. -J.,Meng, X. -R.. 2012

[10]Drought tolerance through over-expression of the expansin gene TaEXPB23 in transgenic tobacco. Li, Feng,Xing, Shichao,Guo, Qifang,Zhao, Meirong,Zhang, Jin,Gao, Qiang,Wang, Wei,Wang, Guiping.

[11]Enhanced thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 by rational engineering of a glycine to proline mutation. Tian, Jian,Wang, Ping,Gao, Shan,Chu, Xiaoyu,Wu, Ningfeng,Fan, Yunliu.

[12]Exogenous nitric oxide protects against salt-induced oxidative stress in the leaves from two genotypes of tomato (Lycopersicom esculentum Mill.). Wu, Xuexia,Zhu, Weimin,Zhang, Hui,Ding, Haidong,Zhu, Weimin,Zhang, Hong Juan.

[13]The growth and antioxidant defense responses of wheat seedlings to omethoate stress. Liang, Yongchao,Zhang, Bo,Chu, Guixin,Wei, Changzhou,Ye, Jun,Li, Zhiqiang,Zhang, Bo.

[14]Forced expression of Mdmyb10, a myb transcription factor gene from apple, enhances tolerance to osmotic stress in transgenic Arabidopsis. Gao, Jian-Jie,Peng, Ri-He,Xiong, Ai-Sheng,Zhu, Bo,Yao, Quan-Hong,Gao, Jian-Jie,Zhang, Zhen,Xu, Jing,Yao, Quan-Hong.

[15]Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress. Latef, Arafat Abdel Hamed Abdel,He Chaoxing.

[16]Research on Optimization of Wheat Seed Germination Rate NIR Model Based on Si-cPLS. Wu Jing-Zhu,Dong Wen-Fei,Dong Jing-Jing,Chen Yan,Mao Wen-Hua,Liu Cui-Ling,Wu Jing-Zhu,Mao Wen-Hua. 2017

[17]Can rice genetic diversity reduce Echinochloa crus-galli infestation?. Chen, X.,Yu, L..

[18]Optimization of culture medium and temperature for the in vitro germination of oil palm pollen. Lin, Yiyun,Wang, Yong,Shi, Peng,Li, Jing,Yang, Yaodong,Lei, Xintao,Iqbal, Amjad.

[19]Study on Germination Rate of Zoysia (Zoysia japonica Steud.) Seeds Using Near Infrared Reflectance Spectroscopy. Dai Zi-yun,Liang Xiao-hong,Zhang Li-juan,Fan Bo,Puyang Xue-hua,Han Lie-bao,Mao Wen-hua. 2013

[20]The Influence of Different Seed Dressing Treatments on Wheat Seedlings Growth under Water Stress Conditions. Wu, Xueping,Zha, Yan,Li, Yinkun,Cai, Dianxiong,Gao, Zhiqiang,Lu, Mei. 2012

作者其他论文 更多>>