Impact of woodchip biochar amendment on the sorption and dissipation of pesticide acetamiprid in agricultural soils

文献类型: 外文期刊

第一作者: Yu, Xiang-Yang

作者: Yu, Xiang-Yang;Mu, Chang-Li;Liu, Xian-Jin;Gu, Cheng;Liu, Cun

作者机构:

关键词: biochar;agricultural soil;acetamiprid;sorption;dissipation

期刊名称:CHEMOSPHERE ( 影响因子:7.086; 五年影响因子:6.956 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Pyrolysis of vegetative biomass into biochar and application of the more stable form of carbon to soil have been shown to be effective in reducing the emission of greenhouse gases, improving soil fertility, and sequestering soil contaminants. However, there is still lack of information about the impact of biochar amendment in agricultural soils on the sorption and environmental fate of pesticides- In this study, we investigated the sorption and dissipation of a neonicotinoid insecticide acetamiprid in three typical Chinese agricultural soils, which were amended by a red gum wood (Eucalyptus spp.) derived biochar. Our results showed that the amendment of biochar (0.5% (w/w)) to the soils could significantly increase the sorption of acetamiprid, but the magnitudes of enhancement were varied. Contributions of 0.5% newly-added biochar to the overall sorption of acetamiprid were 52.3%, 27.4% and 11.6% for red soil, paddy soil and black soil, respectively. The dissipation of acetamiprid in soils amended with biochar was retarded compared to that in soils without biochar amendment. Similar to the sorption experiment, in soil with higher content of organic matter, the retardation of biochar on the dissipation of acetamiprid was lower than that with lower content of organic matter. The different effects of biochar in agricultural soils may attribute to the interaction of soil components with biochar, which would block the pore or compete for binding site of biochar. Aging effect of biochar application in agricultural soils and field experiments need to be further investigated.

分类号: X5

  • 相关文献

[1]Suppression of Chlorantraniliprole Sorption on Biochar in Soil-Biochar Systems. Wang, Ting-Ting,Lu, Meng-Xiao,Liu, Xian-Jin,Yu, Xiang-Yang,Li, Yi-Song,Jiang, Alice C..

[2]Enhanced and irreversible sorption of pesticide pyrimethanil by soil amended with biochars. Pan, Ligang,Yu, Xiangyang,Ying, Guangguo,Kookana, Rai S.,Ying, Guangguo,Pan, Ligang.

[3]Characterisation of Neonicotinoid and Pymetrozine Resistance in Strains of Bemisia tabaci (Hemiptera: Aleyrodidae) from China. Rao Qiong,Luo Chen,Rao Qiong,Zhang Hong-yu,Jones, Christopher M.,Devine, Greg J.,Gorman, Kevin,Denholm, Ian,Xu Yong-hua. 2012

[4]Sublethal effect of avermectin and acetamiprid on the mortality of different life stages of Brontispa longissima (Gestro) (Coleoptera: Hispidae) and its larvae parasitoid Asecodes hispinarum Boucek (Hymenoptera: Eulophidae). Jin, Tao,Lin, Yu-ying,Jin, Qi-an,Wen, Hai-bo,Peng, Zheng-qiang. 2014

[5]Simultaneous Determination of Plant Growth Regulators and Imidacloprid, Acetamiprid in Tea by Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry. Zhu Li,Wang Chen,Chen Hong-Ping,Zhang Ying-Bin,Zhou Su-Juan,Wang Guo-Qing,Liu Xin. 2017

[6]Isolation and Identification of the DNA Aptamer Target to Acetamiprid. He, Jiang,Liu, Yuan,Liu, Xianjin,He, Jiang,Fan, Mingtao.

[7]Pollution assessment, distribution and sources of PAHs in agricultural soils of Pearl River Delta - The biggest manufacturing base in China. Li, Yongtao,Li, Fangbai,Zhang, Tianbin,Yang, Guoyi,Chen, Junjian,Wan, Hongfu. 2007

[8]Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions. Luo, Zhongkui,Wang, Enli,Feng, Wenting,Luo, Yiqi,Baldock, Jeff.

[9]IMPACTS OF WASTEWATER IRRIGATION ON THE DISTRIBUTION OF HEAVY METALS IN AGRICULTURAL SOILS: A CASE STUDY IN FANGSHAN, BEIJING. Han, Ping,Li, Cheng,Feng, Xiao-yuan,Ma, Zhi-hong,Lu, An-xiang,Pan, Li-gang,Wang, Ji-hua,Han, Ping.

[10]Application of 16S rDNA-PCR amplification and DGGE fingerprinting for detection of shift in microbial community diversity in Cu-, Zn-, and Cd-contaminated paddy soils. Li, ZJ,Xu, JM,Tang, CX,Wu, JJ,Muhammad, A,Wang, HZ.

[11]Environment Quality Evaluation of Heavy Metals in agricultural soils of Shilou town in Fangshan district of Beijing. Han, Ping,Feng, Xiaoyuan,Wang, Jihua. 2014

[12]Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Lu, Anxiang,Zhang, Shuzhen,Lu, Anxiang,Wang, Jihua,Han, Ping,Qin, Xiangyang,Wang, Kaiyi.

[13]Driving forces of heavy metal changes in agricultural soils in a typical manufacturing center. Qiu, Menglong,Liu, Liming,Li, Fangbai,Wang, Qi,Chen, Junjian,Yang, Guoyi.

[14]Using ensemble models to identify and apportion heavy metal pollution sources in agricultural soils on a local scale. Wang, Qi,Li, Fangbai,Xie, Zhiyi.

[15]Occurrence, sources, and potential human health risks of polycyclic aromatic hydrocarbons in agricultural soils of the coal production area surrounding Xinzhou, China. Zhao, Long,Hou, Hong,Shangguan, Yuxian,Xu, Yafei,Cheng, Bin,Zhao, Ruifen,Zhang, Yigong,Hua, Xiaozan,Huo, Xiaolan,Zhao, Xiufeng.

[16]Simultaneous determination of florfenicol with its metabolite based on modified quick, easy, cheap, effective, rugged, and safe sample pretreatment and evaluation of their degradation behavior in agricultural soils. Xu, Mingfei,Qian, Mingrong,Zhang, Hu,Wang, Jianmei,Wu, Huizhen,Ma, Junwei.

[17]How do amorphous sesquioxides affect and contribute to butachlor retention in soils?. Liu, Zhongzhen,Zeng, Fang,Liu, Zhongzhen,He, Yan,Xu, Jianming. 2013

[18]Removal of bisphenol A from aqueous solution by hydrophobic sorption of hemimicelles. Gong, R.,Liang, J.,Chen, J.,Gong, R.,Huang, F.. 2009

[19]Sorption of Atrazine in Tropical Soil by Biochar Prepared from Cassava Waste. Deng, Hui,Ge, Chengjun,Deng, Hui,Ge, Chengjun,Yu, Huamei,Chen, Miao. 2014

[20]Influence of dissolved organic matter on sorption and desorption of MCPA in ferralsol. Wu, Dongming,Yun, Yonghuan,Jiang, Lei,Wu, Chunyuan,Jiang, Lei,Wu, Chunyuan,Wu, Chunyuan. 2018

作者其他论文 更多>>