Large-scale sequencing of normalized full-length cDNA library of soybean seed at different developmental stages and analysis of the gene expression profiles based on ESTs

文献类型: 外文期刊

第一作者: Sha, Ai-Hua

作者: Sha, Ai-Hua;Li, Chen;Yan, Xiao-Hong;Shan, Zhi-Hui;Zhou, Xin-An;Jiang, Mu-Lan;Mao, Han;Chen, Bo;Wan, Xia;Wei, Wen-Hui

作者机构:

关键词: EST;Normalized cDNA library;Functional annotation;Soybean;Seed development

期刊名称:MOLECULAR BIOLOGY REPORTS ( 影响因子:2.316; 五年影响因子:2.357 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Although GenBank has now covered over 1,400,000 expressed sequence tags (ESTs) from soybean, most ESTs available to the public have been derived from tissues or environmental conditions rather than developing seeds. It is absolutely necessary for annotating the molecular mechanisms of soybean seed development to analyze completely the gene expression profiles of its immature seed at various stages. Here we have constructed a full-length-enriched cDNA library comprised of a total of 45,408 cDNA clones which cover various stages of soybean seed development. Furthermore, we have sequenced from 50 ends of these clones, 36,656 ESTs were obtained in the present study. These EST sequences could be categorized into 27,982 unigenes, including 22,867 contigs and 5,115 singletons, among which 27,931 could be mapped onto soybean 20 chromosome sequences. Comparative genomic analysis with other plants has revealed that these unigenes include lots of candidate genes specific to dicot, legume and soybean. Approximately 1,789 of these unigenes currently show no homology to known soybean sequences, suggesting that many represent mRNAs specifically expressed in seeds. Novel abundant genes involved in the oil synthesis have been found in this study, may serve as a valuable resource for soybean seed improvement.

分类号: Q7

  • 相关文献

[1]Construction of a Full-Length cDNA Library of Gossypium hirsutum L. and Identification of Two MADS-Box Genes. Wang Li-na,Wu Dong,Yu Shu-xun,Fan Shu-li,Song Mei-zhen,Pang Chao-you,Liu Jun-jie. 2011

[2]Identification of regulatory networks and hub genes controlling soybean seed set and size using RNA sequencing analysis. Du, Juan,Wang, Shoudong,He, Cunman,Shou, Huixia,Zhou, Bin,Ruan, Yong-Ling.

[3]Validation of reference genes for real-time quantitative PCR normalization in soybean developmental and germinating seeds. Li, Qing,Fan, Cheng-Ming,Zhang, Xiao-Mei,Fu, Yong-Fu. 2012

[4]Analysis of expressed sequence tags (ESTs) from a normalized cDNA library and isolation of EST simple sequence repeats from the invasive cotton mealybug phenacoccus solenopsis. Lang, Kun-Ling,Shen, Chang-Peng,Wan, Fang-Hao,Chu, Dong,Fu, Hai-Bin,Wan, Fang-Hao. 2015

[5]CottonFGD: an integrated functional genomics database for cotton. Zhu, Tao,Liang, Chengzhen,Meng, Zhigang,Sun, Guoqing,Meng, Zhaoghong,Guo, Sandui,Zhang, Rui. 2017

[6]Identifying Genetic Differences Between Dongxiang Blue-Shelled and White Leghorn Chickens Using Sequencing Data. Zhao, Qing-bo,Sun, Hao,Zhang, Zhe,Wang, Qi-shan,Zhang, Xiang-zhe,Pan, Yu-chun,Liao, Rong-rong,Yang, Chang-suo,Wang, Qi-shan,Zhang, Xiang-zhe,Pan, Yu-chun. 2018

[7]A collection of 10,096 indica rice full-length cDNAs reveals highly expressed sequence divergence between Oryza sativa indica and japonica subspecies. Liu, Xiaohui,Lu, Tingting,Yu, Shuliang,Li, Ying,Huang, Yuchen,Huang, Tao,Zhang, Lei,Zhu, Jingjie,Zhao, Qiang,Fan, Danlin,Mu, Jie,Shangguan, Yingying,Feng, Qi,Guan, Jianping,Ying, Kai,Zhang, Yu,Lin, Zhixin,Sun, Zongxiu,Qian, Qian,Lu, Yuping,Han, Bin.

[8]PeanutDB: an integrated bioinformatics web portal for Arachis hypogaea transcriptomics. Shu, Changlong,Zhang, Jie,Schmidt, Emily,Li, Pei,Lenox, Douglas,Liu, Lin,Liang, Chun,Schmidt, Emily,Lenox, Douglas,Liang, Chun. 2012

[9]De novo transcriptomic analysis of cowpea (Vigna unguiculata L. Walp.) for genic SSR marker development. Chen, Honglin,Wang, Lixia,Liu, Xiaoyan,Hu, Liangliang,Wang, Suhua,Cheng, Xuzhen. 2017

[10]De Novo Transcriptome Assembly of Isatis indigotica at Reproductive Stages and Identification of Candidate Genes Associated with Flowering Pathways. Bai, Yu,Zhou, Ying,Tang, Xiaoqing,Wang, Yu,Wang, Fangquan,Yang, Jie. 2018

[11]De novo sequencing and characterization of the Bradysia odoriphaga (Diptera: Sciaridae) larval transcriptome. Chen, Haoliang,Lin, Lulu,Xie, Minghui,Zhang, Guangling,Su, Weihua.

[12]Transcriptomic analyses reveal complex and interconnected sucrose signaling cascades in developing seeds of castor bean. Wang, Bin,Haque, Mohammad Enamul,Xu, Wei,Li, Fei,Liu, Aizhong,Wang, Bin,Haque, Mohammad Enamul,Zhang, Yang,Liu, Aizhong. 2018

[13]Comparative Transcriptomic Analyses of Vegetable and Grain Pea (Pisum sativum L.) Seed Development. Liu, Na,Zhang, Guwen,Xu, Shengchun,Hu, Qizan,Gong, Yaming,Mao, Weihua. 2015

[14]Suppression of OsMADS7 in rice endosperm stabilizes amylose content under high temperature stress. Zhang, Hua,Xu, Heng,Feng, Mengjie,Zhu, Ying. 2018

[15]Changes in seed growth, levels and distribution of flavonoids during tartary buckwheat seed development. Song, Chao,Xiang, Da-Bing,Yan, Lin,Song, Yue,Zhao, Gang,Wang, Yue-Hua,Zhang, Bao-Lin. 2016

[16]Evolutionary and functional study of the CDPK gene family in wheat (Triticum aestivum L.). Li, Ai-Li,Zhu, Yuan-Fang,Tan, Xiao-Mei,Wang, Xiang,Wei, Bo,Guo, Han-Zi,Zhang, Zeng-Lin,Chen, Xiao-Bo,Zhao, Guang-Yao,Kong, Xiu-Ying,Jia, Ji-Zeng,Mao, Long,Tan, Xiao-Mei.

[17]Development of an efficient method for the isolation of factors involved in gene transcription during rice embryo development. Ye, R,Yao, QH,Xu, ZH,Xue, HW. 2004

[18]Expression analysis of abscisic acid (ABA) and metabolic signalling factors in developing endosperm and embryo of barley. Chen, Zhiwei,Huang, Jianhua,Muttucumaru, Nira,Halford, Nigel G.,Powers, Stephen J.. 2013

[19]Quantitative phosphoproteomic analysis of early seed development in rice (Oryza sativa L.). Qiu, Jiehua,Hou, Yuxuan,Tong, Xiaohong,Wang, Yifeng,Lin, Haiyan,Liu, Qing,Zhang, Wen,Li, Zhiyong,Zhang, Jian,Nallamilli, Babi R..

[20]Selection for aborted-seeded longan cultivars. Huang, JS,Xu, XD,Zheng, SQ,Xu, JH. 2001

作者其他论文 更多>>