Identification of potential antisense transcripts in rice using conventional microarray

文献类型: 外文期刊

第一作者: Gan, Qiang

作者: Gan, Qiang;Li, Dejun;Zhu, Lihuang;Gan, Qiang;Li, Dejun;Zhu, Lihuang;Gan, Qiang;Li, Dejun;Liu, Guozhen

作者机构:

关键词: Conventional microarray;Labeling;Natural antisense transcripts;Rice;Second strand cDNA

期刊名称:MOLECULAR BIOTECHNOLOGY ( 影响因子:2.695; 五年影响因子:2.303 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Natural antisense transcripts (NATs) are endogenous transcripts that contain reverse complementary sequences to other RNAs (usually called sense transcripts). NATs regulate the expression of sense transcripts in a wide range of species. The identification and analysis of NATs are the prerequisite to elucidate their functions. Microarray is a genome-wide method to detect gene expression. However, conventional microarrays do not contain the specific probes of NATs; thus, they cannot be utilized to detect NATs. In this article, we developed a novel method to identify potential NATs with the conventional microarrays. In this method of our study, we labeled the first strand cDNA from one sample with Cy5 and labeled the second strand cDNA from another sample with Cy3, and then hybridized these labeled samples with oligonucleotide microarray. Using this method, we identified 920 potential NATs in rice variety Nipponbare. Among these potential NATs, 88 of them were confirmed by either full-length cDNA or orientated ESTs (expressed sequence tags). This is the first time that a conventional oligonucleotide microarray was employed to identify NATs in rice.

分类号: Q7

  • 相关文献

[1]An efficient and rapid method to detect and verify natural antisense transcripts of animal genes. Zhang Li,Zhao Rui,Xiao Mei,An Li-long,Lin Shu-dai,Li Bi-xiao,Qiu Feng-fang,Ma Jing-e,Zhang De-xiang,Nie Qing-hua,Zhang Xi-quan. 2016

[2]The antiphasic regulatory module comprising CDF5 and its antisense RNA FLORE links the circadian clock to photoperiodic flowering. Henriques, Rossana,Wang, Huan,Liu, Jun,Huang, Li-Fang,Chua, Nam-Hai,Henriques, Rossana,Boix, Marc,Liu, Jun. 2017

[3]Agricultural GMO safety administration in China. Kou Jian-ping,Zhang Xian-fa,Tang Qiao-ling. 2015

[4]Authentication and traceability of fish maw products from the market using DNA sequencing. Wen, Jing,Zeng, Ling,Sun, Yulin,Chen, Daohai,Xu, Youhou,Luo, Peng,Zhao, Zhe,Yu, Zonghe,Fan, Sigang.

[5]Phytochrome B Negatively Affects Cold Tolerance by Regulating OsDREB1 Gene Expression through Phytochrome Interacting Factor-Like Protein OsPIL16 in Rice. He, Yanan,Li, Yaping,Cui, Lixin,Xie, Lixia,Zheng, Chongke,Zhou, Guanhua,Zhou, Jinjun,Xie, Xianzhi,Li, Yaping,Cui, Lixin. 2016

[6]A Kelch Motif-Containing Serine/Threonine Protein Phosphatase Determines the Large Grain QTL Trait in Rice. Hu, Zejun,Sun, Fan,Xin, Xiaoyun,Qian, Xi,Yang, Jingshui,Luo, Xiaojin,Hu, Zejun,He, Haohua,Wang, Wenxiang,Zhang, Shiyong. 2012

[7]Genome-wide identification of microRNAs and their targets in wild type and phyB mutant provides a key link between microRNAs and the phyB-mediated light signaling pathway in rice. Sun, Wei,wu, Xiu,Xie, Xianzhi,Xu, Xiao Hui,Lu, Xingbo,Sun, Hongwei,Wang, Yong. 2015

[8]Overexpression of an S-like ribonuclease gene, OsRNS4, confers enhanced tolerance to high salinity and hyposensitivity to phytochrome-mediated light signals in rice. Zheng, Jun,Wang, Yingying,He, Yanan,Zhou, Jinjun,Li, Yaping,Liu, Qianqian,Xie, Xianzhi,Zheng, Jun,Wang, Yingying,He, Yanan,Zhou, Jinjun,Xie, Xianzhi. 2014

[9]Distribution Characteristics of Soil Cadmium in Different Textured Paddy Soil Profiles and Its Relevance with Cadmium Uptake by Crops. Wang Zheng-yin,Qin Yu-sheng,Zhan Shao-jun,Yu Hua,Tu Shi-hua. 2013

[10]Overexpression of OsPIL15, a phytochromeinteracting factor- like protein gene, represses etiolated seedling growth in rice. Zhou, Jinjun,Liu, Qianqian,Wang, Yingying,Zhang, Shiyong,Cheng, Huimin,Yan, Lihua,Li, Li,Xie, Xianzhi,Zhou, Jinjun,Wang, Yingying,Zhang, Shiyong,Xie, Xianzhi,Liu, Qianqian,Xie, Xianzhi,Zhang, Fang,Chen, Fan. 2014

[11]DISTRIBUTION CHARACTERISTICS, BIOACCUMULATION, AND SOURCES OF MERCURY IN RICE AT NANSI LAKE AREA, SHANDONG PROVINCE, CHNIA. Liu, H.,Zhang, J.,Dai, J. L.,Wang, L. H.,Zhang, J.,Li, G. X.. 2015

[12]Nitrogen Status Diagnosis of Rice by Using a Digital Camera. Fan Ming-sheng,Zhang Fu-suo,Chen Xin-ping,Jia Liang-liang,Sun Yan-ming,Lue Shi-hua. 2009

[13]Influence of unflooded mulching cultivation on nitrogen uptake and utilization of fertilizer nitrogen by rice. Liu, Xuejun,Zhang, Fusuo,Mao, Daru,Zeng, Xingzhong,Lu, Shihua,Wang, Mingtian. 2008

[14]Overexpression of a phytochrome-regulated tandem zinc finger protein gene, OsTZF1, confers hypersensitivity to ABA and hyposensitivity to red light and far-red light in rice seedlings. Zhou, Jinjun,Fan, Zhongxue,Xie, Xianzhi,Zhang, Cheng,Zhou, Jinjun,Fan, Zhongxue,Xie, Xianzhi,Zhang, Cheng,Ma, Huiquan,Zhang, Fang,Chen, Fan. 2012

[15]Enhancement of innate immune system in monocot rice by transferring the dicotyledonous elongation factor Tu receptor EFR. Lu, Fen,Wang, Huiqin,Wang, Shanzhi,Jiang, Wendi,Yang, Jun,Sun, Wenxian,Lu, Fen,Wang, Huiqin,Wang, Shanzhi,Jiang, Wendi,Yang, Jun,Sun, Wenxian,Shan, Changlin,Li, Bin,Shan, Changlin,Li, Bin,Yang, Jun,Zhang, Shiyong. 2015

[16]A missense mutation in the transmembrane domain of CESA9 affects cell wall biosynthesis and plant growth in rice. Wang, Daofeng,Lan, Jinhao,Wang, Daofeng,Zhao, Jinfeng,Li, Xueyong,Yuan, Shoujiang,Yin, Liang,Guo, Baotai. 2012

[17]Mutations in the MIT3 gene encoding a caroteniod isomerase lead to increased tiller number in rice. Liu, Lihua,Peng, Peng,Qiu, Haiyang,Zhao, Jinfeng,Fang, Jingjing,Patil, Suyash Bhimgonda,Li, Xueyong,Xie, Tingting,Zhang, Wenhui,Wang, Yiqin,Fang, Shuang,Chu, Jinfang,Yuan, Shoujiang. 2018

[18]Detection of epistatic interactions of three QTLs for heading date in rice using single segment substitution lines. Ding, Han-Feng,Liu, Xu,Li, Run-Fang,Wang, Wen-Ying,Zhang, Y.,Zhang, Xiao-Dong,Yao, Fang-Yin,Li, Guang-Xian,Jiang, Ming-Song,Ding, Han-Feng.

[19]Delimitation of the PSH1(t) gene for rice purple leaf sheath to a 23.5 kb DNA fragment. Wang, Wen-Ying,Ding, Han-Feng,Li, Run-Fang,Liu, Xu,Zhang, Yu,Yao, Fang-Yin,Li, Guang-Xian,Jiang, Ming-Song.

[20]Determination of 5-hydroxymethyl-2-deoxycytidine in Rice by High-performance Liquid Chromatography-Tandem Mass Spectrometry with Isotope Dilution. Wang, Xiaoli,Wang, Shanshan,Chen, Xiangfeng,Chen, Yue,Yuan, Jinpeng,Zhao, Rusong,Guo, Tao. 2017

作者其他论文 更多>>