Screening and identification of insertion mutants from Bipolaris eleusines by mutagenesis based on restriction enzyme-mediated integration

文献类型: 外文期刊

第一作者: Zhang Jianping

作者: Zhang Jianping;Duan Guifang;Zhu Kai;Zhou Yongjun;Lu Yongliang;Yu Liuqing

作者机构:

关键词: Insertional mutagenesis;Ophiobolin A-deficient mutant;REMI;Transformation

期刊名称:FEMS MICROBIOLOGY LETTERS ( 影响因子:2.742; 五年影响因子:2.856 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Ophiobolin A is sesterterpenoid-type phytotoxin and may be an important candidate for development of new crop protection and pharmaceutical products. The restriction enzyme-mediated integration (REMI) method was used to introduce the plasmid pSH75 into the ophiobolin A-producing filamentous fungus Bipolaris eleusines. A total of 323 stable transformants were obtained, all of which were capable of growing on potato-dextrose agar medium containing 200 μg mL ~(-1) hygromycin B. The transformation frequency was about 4-5 transformants μg -1 plasmid DNA. An ophibolin A-deficient transformant (B014) was assessed and the presence of the hph gene in this transformant was confirmed by PCR. The cell-free cultural filtrates of this transformant showed significantly less inhibition on mycelial growth of the fungal pathogen Rhizoctoni solani but little effect on barnyard grass as opposed to that of the wild-type B. eleusines. There was no detectable amount of ophiobolin A in B014 samples measured with HPLC. This research suggests REMI as a potential approach for improving the production of ophiobolin A by B. eleusines via genetic engineering to upregulate certain genes responsible for desired biosynthetic pathways.

分类号: Q93

  • 相关文献

[1]Agrobacterium tumefaciens-mediated transformation: An efficient tool for insertional mutagenesis and targeted gene disruption in Harpophora oryzae. Liu, Ning,Ning, Guo-Ao,Shi, Huan-Bin,Zhang, Chu-Long,Feng, Xiao-Xiao,Liu, Xiao-Hong,Su, Zhen-Zhu,Lin, Fu-Cheng,Chen, Guo-Qing,Lu, Jian-Ping,Lin, Fu-Cheng,Mao, Li-Juan.

[2]Biodegradation of neonicotinoid insecticide, imidacloprid by restriction enzyme mediated integration (REMI) generated Trichoderma mutants. He, Xiangfeng,Wubie, Abebe Jenberie,Diao, Qingyun,Li, Wei,Xue, Fei,Guo, Zhanbo,Zhou, Ting,Xu, Shufa,Wubie, Abebe Jenberie.

[3]Histological and Ultrastructural Observation Reveals Significant Cellular Differences between Agrobacterium Transformed Embryogenic and Non-embryogenic Calli of Cotton. Shang, Hai-Hong,Liu, Chuan-Liang,Zhang, Chao-Jun,Li, Feng-Lian,Hong, Wei-Dong,Li, Fu-Guang.

[4]Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.). Li, ZK,Fu, BY,Gao, YM,Xu, JL,Ali, J,Lafitte, HR,Jiang, YZ,Rey, JD,Vijayakumar, CHM,Maghirang, R,Zheng, TQ,Zhu, LH.

[5]Functional analysis of GUS expression patterns and T-DNA integration characteristics in rice enhancer trap lines. Peng, H,Huang, HM,Yang, YZ,Zhai, Y,Wu, JX,Huang, DF,Lu, TG.

[6]Identifying pathogenicity genes in the rubber tree anthracnose fungus Colletotrichum gloeosporioides through random insertional mutagenesis. Cai, Zhiying,Cai, Zhiying,Lin, Chunhua,Shi, Tao,Chen, Yipeng,Huang, Guixiu,Cai, Zhiying,Li, Guohua,Zhai, Ligang. 2013

[7]Development of a GFP-expressing Ustilaginoidea virens strain to study fungal invasion and colonization in rice spikelets. Andargie, Mebeaselassie,Li, Luoye,Li, Jianxiong,Feng, Aiqing,Zhu, Xiaoyuan.

[8]Variant Amino Acid Residues Alter the Enzyme Activity of Peanut Type 2 Diacylglycerol Acyltransferases. Zheng, Ling,Wan, Shubo,Peng, Zhenying,Zheng, Ling,Bian, Fei,Chen, Gao,Shan, Lei,Li, Xinguo,Wan, Shubo,Peng, Zhenying,Shockey, Jay. 2017

[9]Transformation of Liquidambar formosana L. via Agrobacterium tumefaciens using a mannose selection system and recovery of salt tolerant lines. Qiao, Guirong,Zhou, Jing,Jiang, Jing,Sun, Yuehua,Pan, Luanyin,Song, Honggai,Jiang, Jingmin,Zhuo, Renying,Sun, Yuehua,Wang, Xiaojuan,Sun, Zongxiu,Sun, Yuehua. 2010

[10]Improvement of Agrobacterium-mediated transformation efficiency of maize (Zea mays L.) genotype Hi-II by Optimizing Infection and Regeneration Conditions. Xu, You,Ren, Wen,Liu, Ya,Zhao, Jiuran,Xu, You. 2016

[11]Progress in chloroplast genome analysis. Liu, Clarke Jihong,Xing Shao-Chen. 2008

[12]Protoplast transformation as a potential platform for exploring gene function in Verticillium dahliae. Rehman, Latifur,Su, Xiaofeng,Guo, Huiming,Qi, Xiliang,Cheng, Hongmei. 2016

[13]Production of Bioactive Recombinant Bovine Chymosin in Tobacco Plants. Wei, Zheng-Yi,Fan, Ming-Xia,Lin, Feng,Wei, Zheng-Yi,Zhang, Yu-Ying,Wang, Yun-Peng,Zhong, Xiao-Fang,Xing, Shao-Chen,Zhang, Yu-Ying,Xu, Nuo. 2016

[14]Regeneration of Chinese cabbage transgenic plants expressing antibacterial peptide gene and cowpea trypsin inhibitor gene. Zhao, Junliang,Liang, Aihua,Zhu, Zhen,Tang, Yixiong. 2006

[15]Transformation of sulfate and organic S in rice straw in flooded paddy soils and its availability to plants using sulfur-35 labeling. Zhou, W,Li, ST,He, P,Lin, B. 2006

[16]A new time-saving transformation system for Brassica napus. Kong, Fanming,Li, Juan,Tan, Xiaoli,Zhang, Lili,Zhang, Zhiyan,Ma, Xiaoke,Qi, Cunkou. 2009

[17]Transient beta-glucuronidase expression in asparagus protoplasts following electroporation. Chen, GY,Conner, AJ,Fautrier, AG,Field, RJ. 1999

[18]Enhancement of salt tolerance in alfalfa transformed with the gene encoding for betaine aldehyde dehydrogenase. Liu, Zi-Hui,Zhang, Hong-Mei,Li, Guo-Liang,Guo, Xiu-Lin,Zhang, Yan-Min,Liu, Zi-Hui,Zhang, Hong-Mei,Li, Guo-Liang,Guo, Xiu-Lin,Zhang, Yan-Min,Chen, Shou-Yi,Liu, Gui-Bo. 2011

[19]An efficient protocol for the production of chit42 transgenic Furenzhi banana (Musa spp. AA group) resistant to Fusarium oxysporum. Hu, Chun-Hua,Wei, Yue-Rong,Huang, Yong-Hong,Yi, Gan-Jun,Hu, Chun-Hua,Wei, Yue-Rong,Huang, Yong-Hong,Yi, Gan-Jun. 2013

[20]A callus transformation system for gene functional studies in soybean. Xu Kun,Zhang Xiao-mei,Fan Cheng-ming,Chen Fu-lu,Zhu Jin-long,Fu Yong-fu,Zhang Shi-long,Chen Qing-shan. 2017

作者其他论文 更多>>