Molecular detection of rye (Secale cereale L.) chromatin in wheat line 07jian126 (Triticum aestivum L.) and its association to wheat powdery mildew resistance

文献类型: 外文期刊

第一作者: Long, Hai

作者: Long, Hai;Zhang, Jie;Deng, Guangbing;Pan, Zhifen;Yu, Maoqun;Yu, Shuiyang;Zhang, Erliang;Yang, Hong;Zhang, Jie

作者机构:

关键词: Blumeria graminis;Molecular marker;Rye introgression line;Gene resource;Marker-assisted selection

期刊名称:EUPHYTICA ( 影响因子:1.895; 五年影响因子:2.181 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Powdery mildew (Pm), caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most serious diseases for common wheat in many regions around the world. Seeking for new resistance source is urgently required to meet the challenge of the rapid loss of resistance due to the co-evolution of the pathogen's virulence. Wheat line 07jian126 (Triticum aestivum L.) is highly resistant to the Pm disease prevailing in Sichuan province of China. Previous study showed that a SSR marker Xbarc183 was linked to the Pm resistance in 07jian126, which might be controlled by a single dominant gene, designated as Pm07J126. In this study, two additional F-2 populations were used to confirm the linkage between Pm07J126 and Xbarc183. Furthermore, rye chromatin was detected in 07jian126 by molecular analysis of a rye-specific SCAR marker O5 which co-segregated with Pm07J126. This result indicated that Pm07J126 might originate from rye. The reaction patterns to 21 Bgt isolates and molecular marker analysis implied that Pm07J126 might be different from the known rye-derived Pm genes Pm7, Pm8, Pm17 and PmJZHM2RL. Chromosome observation, molecular marker, and A-PAGE analysis suggested that 07jian126 might be a rye introgression line and neither contain 1RS translocation nor secalins gene. Consequently, 07jian126 could be considered as a valuable resource for Pm resistance development of wheat. Besides, the molecular markers Xbarc183 and O5 are useful in marker-assisted selection of Pm07J126 in wheat breeding programs.

分类号: S3

  • 相关文献

[1]Marker-Assisted Development and Evaluation of Near-Isogenic Lines for Broad-Spectrum Powdery Mildew Resistance Gene Pm2b Introgressed into Different Genetic Backgrounds of Wheat. Xu, Hongxing,Cao, Yanwei,Xu, Yunfeng,Ma, Pengtao,Ma, Feifei,Song, Liping,An, Diaoguo,Cao, Yanwei,Li, Lihui. 2017

[2]Identification and molecular mapping of PmHNK54: a novel powdery mildew resistance gene in common wheat. Xu, Weigang,Li, Chunxin,Hu, Lin,Wang, Huiwei,Dong, Haibin,Zhang, Jianzhou,Zan, Xiangcun,Li, Chunxin. 2011

[3]Localization of a New Gene for Bitterness in Cucumber. Zhang, Shengping,Miao, Han,Sun, Rifei,Wang, Xiaowu,Huang, Sanwen,Gu, Xingfang,Wehner, Todd C.. 2013

[4]Molecular Mapping and Candidate Gene Analysis for Numerous Spines on the Fruit of Cucumber. Zhang, Shengping,Liu, Shulin,Miao, Han,Wang, Min,Liu, Panna,Gu, Xingfang,Wehner, Todd C..

[5]Correlation of saponin content and Fusarium resistance in hybrids from different ploidy levels of Lilium Oriental. Wu, Li-Fang,Wang, Ji-Hua,Liu, Wu-Lin,Liu, Fei-Hu,Wu, Hong-Zhi,Zheng, Si-Xiang.

[6]QTL Mapping for Adult Plant Resistance to Powdery Mildew in Italian Wheat cv. Strampelli. Asad Muhammad Azeem,BAI Bin,LAN Cai-xia,YAN Jun,XIA Xian-chun,ZHANG Yong,HE Zhong-hu. 2013

[7]Molecular cytogenetic characterization of a new wheat-rye 4R chromosome translocation line resistant to powdery mildew. An, Diaoguo,Ma, Pengtao,Luo, Qiaoling,Xu, Hongxing,Xu, Yunfeng,Zheng, Qi,Lv, Zhenling,Li, Bin,Li, Lihui,Zhou, Yilin.

[8]Characterization of a New Pm2 Allele Conferring Powdery Mildew Resistance in the Wheat Germplasm Line FG-1. Ma, Pengtao,Xu, Hongxng,Zhang, Hongxia,Han, Guohao,Xu, Yunfeng,Zhang, Xiaotian,An, Diaoguo,Li, Lihui,Fu, Xiaoyi. 2016

[9]Effects of physcion, a natural anthraquinone derivative, on the infection process of Blumeria graminis on wheat. Yang, Xiaojun,Yang, Lijun,Yu, Dazhao,Ni, Hanwen. 2008

[10]Physcion, a natural anthraquinone derivative, enhances the gene expression of leaf-specific thionin of barley against Blumeria graminis. Ma, Xingxia,Ni, Hanwen,Ma, Xingxia,Yang, Xiaojun,Yang, Xiaojun,Zeng, Fansong,Yang, Lijun,Yu, Dazhao.

[11]AvrPm2 encodes an RNase-like avirulence effector which is conserved in the two different specialized forms of wheat and rye powdery mildew fungus. Praz, Coraline R.,Bourras, Salim,Sanchez-Martin, Javier,Menardo, Fabrizio,Roffler, Stefan,Boni, Rainer,Herren, Gerard,McNally, Kaitlin E.,Parlange, Francis,Oberhaensli, Simone,Fluckiger, Simon,Schafer, Luisa K.,Wicker, Thomas,Keller, Beat,Zeng, Fansong,Xue, Minfeng,Yang, Lijun,Yu, Dazhao,Zeng, Fansong,Xue, Minfeng,Yang, Lijun,Yu, Dazhao,Zeng, Fansong,Xue, Minfeng,Yang, Lijun,Yu, Dazhao,Ben-David, Roi.

[12]Pyramiding of Pi46 and Pita to improve blast resistance and to evaluate the resistance effect of the two R genes. Xiao Wu-ming,Luo Li-xin,Wang Hui,Guo Tao,Liu Yong-zhu,Zhou Ji-yong,Chen Zhi-qiang,Zhu Xiao-yuan,Yang Qi-yun. 2016

[13]Development of SNP-based dCAPS markers for identifying male sterile gene tms5 in two-line hybrid rice. Song, F. S.,Ni, J. L.,Li, L.,Ni, D. H.,Yang, J. B.,Qian, Y. L.. 2016

[14]SSR markers associated with fertility restoration genes against Triticum timopheevii cytoplasm in Diticum aestivum. Zhou, WC,Kolb, FL,Domier, LL,Wang, SW. 2005

[15]Marker-assisted breeding of Indonesia local rice variety Siputeh for semi-dwarf phonetype, good grain quality and disease resistance to bacterial blight. Luo, Yanchang,Yin, Zhongchao,Zakaria, Sabaruddin,Basyah, Bakhtiar,Luo, Yanchang,Ma, Tingchen,Li, Zefu,Yang, Jianbo,Yin, Zhongchao. 2014

[16]Enhancing phosphorus uptake efficiency through QTL-based selection for root system architecture in maize. Gu, Riliang,Chen, Fanjun,Long, Lizhi,Cai, Hongguang,Liu, Zhigang,Yang, Jiabo,Wang, Lifeng,Mi, Guohua,Zhang, Fusuo,Yuan, Lixing,Gu, Riliang,Li, Huiyong,Li, Junhui,Cai, Hongguang,Wang, Lifeng,Li, Huiyong. 2016

[17]Microsatellite mapping of the powdery mildew resistance gene Pm5e in common wheat (Triticum aestivum L.). Huang, XQ,Wang, LX,Xu, MX,Roder, MS. 2003

[18]Marker-assisted breeding of the rice restorer line Wanhui 6725 for disease resistance, submergence tolerance and aromatic fragrance. Luo, Yanchang,Ong, Kar Hui,Yin, Zhongchao,Luo, Yanchang,Ma, Tingchen,Li, Zefu,Yang, Jianbo,Zhang, Aifang,Yin, Zhongchao. 2016

[19]Association mapping of quantitative trait loci for yield-related agronomic traits in rice (Oryza sativa L.). Xu Fei-fei,Huang Yan,Tong Chuan,Chen Ya-ling,Bao Jin-song,Jin Liang. 2016

[20]Development of molecular markers linked to the wheat powdery mildew resistance gene Pm4b and marker validation for molecular breeding. Yi, Y. J.,Li, H. Y.,Wang, F.,Yi, Y. J.,An, L. Z.,Wang, X. L.,Huang, X. Q.. 2008

作者其他论文 更多>>