Responses of Agronomic Benefit and Soil Quality to Better Management of Nitrogen Fertilizer Application in Greenhouse Vegetable Land

文献类型: 外文期刊

第一作者: Zhang Jian-Feng

作者: Zhang Jian-Feng;Yang Jun-Cheng;Song Xiao-Zong;Liu Zhao-Hui;Jiang Li-Hua

作者机构:

关键词: maize straw;N use efficiency;soil enzyme;soil NO3-N accumulation;tomato yields

期刊名称:PEDOSPHERE ( 影响因子:3.911; 五年影响因子:4.814 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: As a result of intensive greenhouse vegetable production in northern China, the potential risk of nitrogen (N) fertilizer over-applied is increasingly apparent and is threatening ecosystem and the sustainability of food production. An experiment was carried out in Shouguang, Shangdong Province, China to evaluate agronomic benefit and soil quality under different N applications, including the conventional chemical N rate (1000 kg N ha1 season1, N1), 70% of N1 (N2), 70% of N1 + maize straw (N3), 50% of N1 + maize straw + drip irrigation (N4), and 0% of N1 (N0), during two successive growing seasons of autumn-winter (AW) and winter-spring (WS). The maximum yields for N4 were 1.1 and 1.0 times greater than those for N1 in the AW and WS seasons, respectively. N agronomic efficiency (AEN) and apparent N recovery efficiency (REN) were greatest with the N4. A significant relationship was found between soil NO3-N content and electrical conductivity (EC) (R2 = 0.61 in the AW season and R2 = 0.29 in the WS season). Reducing N fertilizer decreased soil NO3-N accumulation (20.9%37.8% reduction in the AW season and 11.7%20.1% reduction in the WS season) relative to the accumulation observed for N1 within the 0100 cm soil layer. Soil urease and invertase activities were not significantly different among N treatments. The N4 treatment would be practical for reducing excess N input and maintaining the sustainability of greenhouse-based intensive vegetable systems in Shouguang.

分类号: S15

  • 相关文献

[1]Effect of poly (gamma-glutamic acid) on wheat productivity, nitrogen use efficiency and soil microbes. Xu, Z.,Wan, Ch.,Feng, X.,Xu, H.,Xu, X.. 2013

[2]Analysis on the Impact of Composting with Different Proportions of Corn Stalks and Pig Manure on Humic Acid Fractions and IR Spectral Feature. Sun Xiang-ping,Xiao Ai-ping,Sun Xiang-ping,Li Guo-xue,Shi Hong,Wang Yi-ming,Li Yang-yang. 2014

[3]FIRST CHARACTERIZATION OF HUMIC-LIKE SUBSTANCES ISOLATED FROM MAIZE STRAW BIOCHAR. Zhang, Chang,Cai, Hongguang,Zhang, Chang,Ren, Jun,Wang, Lichun.

[4]Effect of herbicide used with years (8+1) on soil enzymic activity and microbial population diversity. Jiang, Yumei,Lin, Di,Wang, Jinfeng,Cao, Guangpan,Zhu, Du,Guan, Xianjiao,Peng, Chunrui,Zhu, Du.

[5]Distribution of exogenous phytase activity in soil solid-liquid phases and their effect on soil organic P hydrolysis. Yang, Xiao Z.,Chen, Li J.,Yang, Xiao Z..

[6]SOIL BIOLOGICAL AND BIOCHEMICAL QUALITY OF WHEAT-MAIZE CROPPING SYSTEM IN LONG-TERM FERTILIZER EXPERIMENTS. Qi, Ying-Chun,Hu, Cheng.

[7]Soil microbial properties of black soil under long-term fertilisation. Wei, Dan,Zhou, Baoku,Ma, Xingzhu,Chen, Xueli,Zhang, Junzheng.

[8]Inoculating chlamydospores of Trichoderma asperellum SM-12F1 changes arsenic availability and enzyme activity in soils and improves water spinach growth. Su, Shiming,Zeng, Xibai,Bai, Lingyu,Wang, Yanan,Wu, Cuixia,Williams, Paul N.,Zhang, Lili.

[9]Response of the bacterial diversity and soil enzyme activity in particle-size fractions of Mollisol after different fertilization in a long-term experiment. Ling, Ning,Sun, Yuming,Ma, Jinghua,Guo, Junjie,Yu, Guanghui,Ran, Wei,Guo, Shiwei,Shen, Qirong,Zhu, Ping,Peng, Chang.

[10]Lint yield and nitrogen use efficiency of field-grown cotton vary with soil salinity and nitrogen application rate. Zhang, Dongmei,Li, Weijiang,Xin, Chengsong,Tang, Wei,Eneji, A. Egrinya,Dong, Hezhong,Eneji, A. Egrinya. 2012

[11]Integrated crop-N system management to establish high wheat yield population. Lu, Dianjun,Lu, Feifei,Cui, Zhenling,Zou, Chunqin,Chen, Xinping,Lu, Dianjun,Yue, Shanchao,Liu, Zhaohui.

[12]Nitrogen use efficiency of cotton (Gossypium hirsutum L.) as influenced by wheat-cotton cropping systems. Du, Xiangbei,Chen, Binglin,Zhang, Yuxiao,Zhao, Wenqing,Shen, Tianyao,Zhou, Zhiguo,Meng, Yali,Du, Xiangbei.

[13]Characterizing N uptake and use efficiency in rice as influenced by environments. Xie, Xiaobing,Huang, Min,Zhou, Xuefeng,Zhang, Ruichun,Chen, Jiana,Wu, Dandan,Xia, Bing,Zou, Yingbin,Jiang, Peng,Xiong, Hong,Xu, Fuxian. 2016

[14]Nitrogen release dynamics and transformation of slow release fertiliser products and their effects on tea yield and quality. Han, Wen-Yan,Ma, Li-Feng,Shi, Yuan-Zhi,Ruan, Jian-Yun,Kemmitt, Sarah J.. 2008

[15]Fate of applied urea N-15 in a soil-maize system as affected by urease inhibitor and nitrification inhibitor. Zhang, L.,Wu, Z.,Jiang, Y.,Chen, L.,Song, Y.,Zhang, L.,Wang, L.,Xie, J.,Ma, X.. 2010

[16]Excessive nitrogen application decreases grain yield and increases nitrogen loss in a wheat-soil system. Wang, Dong,Xu, Zhenzhu,Zhao, Junye,Wang, Yuefu,Yu, Zhenwen,Xu, Zhenzhu,Zhao, Junye,Wang, Yuefu. 2011

[17]Comparisons of yield performance and nitrogen response between hybrid and inbred rice under different ecological conditions in southern China. Xu Fu-xian,Xiong Hong,Jiang Peng,Xie Xiao-bing,Huang Min,Zhou Xue-feng,Zhang Rui-chun,Chen Jia-na,Wu Dan-dan,Xia Bing,Zou Ying-bin,Zou Ying-bin. 2015

[18]On-farm evaluation of an in-season nitrogen management strategy based on soil N-min test. Cui, Zhenling,Zhang, Fusuo,Chen, Xinping,Miao, Yuxin,Li, Junliang,Shi, Liwei,Xu, Jiufei,Ye, Youliang,Liu, Chunsheng,Yang, Zhiping,Zhang, Qiang,Huang, Shaomin. 2008

[19]Contrasted effects of biochar on maize growth and N use efficiency depending on soil conditions. Peng, Xinhua,Zhu, Qiaohong,Huang, Taiqing.

[20]Mixture of controlled release and normal urea to optimize nitrogen management for high-yielding (> 15 Mg ha(-1)) maize. Guo, Jiameng,Chen, Xinping,Wang, Yonghong,Blaylock, Alan D..

作者其他论文 更多>>