Identification of Glycine Max MicroRNAs in response to phosphorus deficiency

文献类型: 外文期刊

第一作者: Sha, Aihua

作者: Sha, Aihua;Ba, Hongping;Shan, Zhihui;Zhang, Xiaojuan;Wu, Xuejun;Qiu, Dezheng;Zhou, Xinan;Sha, Aihua;Ba, Hongping;Shan, Zhihui;Zhang, Xiaojuan;Wu, Xuejun;Zhou, Xinan;Chen, Yinhua

作者机构:

关键词: Deep sequencing;Glycine Max;miRNA;Phosphorus deficiency

期刊名称:JOURNAL OF PLANT BIOLOGY ( 影响因子:2.434; 五年影响因子:2.455 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: MicroRNAs (miRNAs) are endogenous small RNAs regulating plant development and stress responses. In addition, phosphorus (P) is an important macronutrient for plant growth and development. More than two hundred miRNAs have been identified in Glycine Max and a few of miRNAs have been shown to respond to P deficiency, however, whether there are other miRNAs involved in P deficiency response is largely unknown. In this study, we used high-throughput small RNA sequencing and whole-genome-wide mining to identify the potential miRNAs in response to P deficiency. After sequencing, we deduced 183 known, 99 conserved and 126 novel miRNAs in Glycine Max. Among them, in response to P deficiency, the expressions of 27 known, 16 conserved and 12 novel miRNAs showed significant changes in roots, whereas the expressions of 34 known, 14 conserved and 7 novel miRNAs were significantly different in shoots. Furthermore, we validated the predicated novel miRNAs and found that three miRNAs in roots and five miRNAs in shoots responded to P deficiency. Some miRNAs were P-induced whereas some were P-suppressed. Together these results indicated that the miRNAs identified might play important roles in regulating P signaling pathway.

分类号: Q94

  • 相关文献

[1]Integrative RNA-and miRNA-Profile Analysis Reveals a Likely Role of BR and Auxin Signaling in Branch Angle Regulation of B. napus. Cheng, Hongtao,Hao, Mengyu,Wang, Wenxiang,Mei, Desheng,Liu, Jia,Wang, Hui,Sang, Shifei,Tang, Min,Zhou, Rijin,Chu, Wen,Fu, Li,Hu, Qiong,Wells, Rachel. 2017

[2]Bioinformatics analysis of hemocyte miRNAs of scallop Chlamys farreri against acute viral necrobiotic virus (AVNV). Chen, Guofu,Zhang, Chunyun,Jiang, Fengjuan,Wang, Yuanyuan,Xu, Zhong,Wang, Chongming. 2014

[3]Repertoire of porcine MicroRNAs in adult ovary and testis by deep sequencing. Chen, Haosi,Wang, Xin,Gao, Xiaolian,Li, Mingzhou,Liu, Yingkai,Wang, Tao,Guan, Jiuqiang,Luo, Zonggang,Ma, Jideng,Mu, Zhiping,Jiang, An-an,Zhu, Li,Li, Xuewei,Chen, Lei,Wang, Jinyong,Lang, Qiulei,Zhou, Xiaochuan,Zeng, Wenxian,Li, Ning,Li, Kui.

[4]Genome-wide identification and characterization of conserved and novel microRNAs in grass carp (Ctenopharyngodon idella) by deep sequencing. Gong, Wangbao,Xie, Jun,Wang, Guangjun,Yu, Deguang,Huang, Yong,Sun, Xihong.

[5]Molecular Identification and Analysis of Arsenite Stress-Responsive miRNAs in Rice. Liu, Qingpo,Zhang, Hengmu.

[6]Association of extracellular dNTP utilization with a GmPAP1-like protein identified in cell wall proteomic analysis of soybean roots. Wu, Weiwei,Lin, Yan,Liu, Pandao,Chen, Qianqian,Tian, Jiang,Liang, Cuiyue,Liu, Pandao. 2018

[7]Effect of phosphorus deficiency on the photosynthetic characteristics of rice plants. Xu, H. X.,Weng, X. Y.,Yang, Y.. 2007

[8]Identification of differentially expressed proteins in soybean nodules under phosphorus deficiency through proteomic analysis. Chen, Zhijian,Cui, Qiangqiang,Liang, Cuiyue,Sun, Lili,Tian, Jiang,Liao, Hong,Liang, Cuiyue,Sun, Lili. 2011

[9]INFLUENCE OF P DEFICIENCY ON MAJOR SECONDARY METABOLISM IN FLAVONOIDS SYNTHESIS PATHWAY OF CHRYSANTHEMUM MORIFOLIUM RAMAT. Liu, Wei,Wang, Xiao,Zhu, Duan-Wei,Geng, Ming-Jian,Yang, Te-Wu,Liu, Da-Hui.

[10]Soybean Fe-S cluster biosynthesis regulated by external iron or phosphate fluctuation. Qin, Lu,Wang, Meihuan,Liang, Xuejiao,Wu, Zhigeng,Zuo, Jia,Feng, Xiangyang,Ye, Hong,Qin, Lu,Chen, Liyu,Lin, Zhihao,Zhao, Jing,Liao, Hong.

[11]OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Yi, KK,Wu, ZC,Zhou, J,Du, LM,Guo, LB,Wu, YR,Wu, P.

[12]Genotypic variation of rice in phosphorus acquisition from iron phosphate: Contributions of root morphology and phosphorus uptake kinetics. Li, Y. F.,Luo, A. C.,Wei, X. H.,Yao, X. G.. 2007

[13]Physiological changes in soybean (Glycine max) Wuyin9 in response to N and P nutrition. Gan, YB,Stulen, I,van Keulen, H,Kuiper, PJC.

[14]Effects of phosphorus supply on the quality of green tea. Lin, Zheng-He,Chen, Li-Song,Lin, Zheng-He,Chen, Li-Song,Lin, Zheng-He,Chen, Rong-Bing,Zhang, Fang-Zhou,Qi, Yi-Ping,Chen, Li-Song.

[15]Identification of genes differentially expressed in the roots of rubber tree (Hevea brasiliensis Muell. Arg.) in response to phosphorus deficiency. He, Peng,Qin, Huaide,Wu, Min,Wu, Bingsun,Wei, Jiashao,Wang, Dapeng.

[16]Spatial distribution and expression of intracellular and extracellular acid phosphatases of cluster roots at different developmental stages in white lupin. Tang, Hongliang,Li, Xiaoqing,Zu, Chao,Zhang, Fusuo,Shen, Jianbo,Tang, Hongliang,Zu, Chao.

[17]Effects of combined inoculation with Rhizophagus intraradices and Paenibacillus mucilaginosus on plant growth, root morphology, and physiological status of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings under different levels of phosphorus. Wang, Peng,Wu, Shao-Hui,Wen, Ming-Xia,Wang, Yin,Wang, Peng,Wu, Qiang-Sheng.

[18]Genome-wide sequencing of small RNAs reveals a tissue-specific loss of conserved microRNA families in Echinococcus granulosus. Bai, Yun,Jin, Lei,Kang, Hui,Zhu, Yongqiang,Zhang, Lu,Li, Xia,Ma, Fengshou,Wang, Shengyue,Zhang, Zhuangzhi,Zhao, Li,Shi, Baoxin,Li, Jun,Zhang, Wenbao,McManus, Donald P.. 2014

[19]The miRNAs and their regulatory networks responsible for pollen abortion in Ogura-CMS Chinese cabbage revealed by high-throughput sequencing of miRNAs, degradomes, and transcriptomes. Wei, Xiaochun,Yao, Qiuju,Yuan, Yuxiang,Zhao, Yanyan,Zhang, Qiang,Wang, Zhiyong,Jiang, Wusheng,Zhang, Xiaowei,Zhang, Xiaohui,Li, Xixiang,Wei, Fang. 2015

[20]A deep sequencing reveals significant diversity among dominant variants and evolutionary dynamics of avian leukosis viruses in two infectious ecosystems. Meng, Fanfeng,Dong, Xuan,Chang, Shuang,Zhao, Peng,Cui, Zhizhong,Hu, Tao,Fan, Jianhua. 2016

作者其他论文 更多>>