Western honeybee drones and workers (Apis mellifera ligustica) have different olfactory mechanisms than eastern honeybees (Apis cerana cerana)

文献类型: 外文期刊

第一作者: Woltedji, Dereje

作者: Woltedji, Dereje;Song, Feifei;Zhang, Lan;Gala, Alemayehu;Han, Bin;Feng, Mao;Fang, Yu;Li, Jianke

作者机构:

关键词: antennae;drone;honeybee;olfaction;proteome;species;worker

期刊名称:JOURNAL OF PROTEOME RESEARCH ( 影响因子:4.466; 五年影响因子:4.352 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The honeybees Apis mellifera ligustica (Aml) and Apis cerana cerana (Acc) are two different western and eastern bee species that evolved in distinct ecologies and developed specific antennal olfactory systems for their survival. Knowledge of how their antennal olfactory systems function in regards to the success of each respective bee species is scarce. We compared the antennal morphology and proteome between respective sexually mature drones and foraging workers of both species using a scanning electron microscope, two-dimensional electrophoresis, mass spectrometry, bioinformatics, and quantitative real-time polymerase chain reaction. Despite the general similarities in antennal morphology of the drone and worker bees between the two species, a total of 106 and 100 proteins altered their expression in the drones' and the workers' antennae, respectively. This suggests that the differences in the olfactory function of each respective bee are supported by the change of their proteome. Of the 106 proteins that altered their expression in the drones, 72 (68%) and 34 (32%) were overexpressed in the drones of Aml and Acc, respectively. The antennae of the Aml drones were built up by the highly expressed proteins that were involved in carbohydrate metabolism and energy production, molecular transporters, antioxidation, and fatty acid metabolism in contrast to the Acc drones. This is believed to enhance the antennal olfactory functions of the Aml drones as compared to the Acc drones during their mating flight. Likewise, of the 100 proteins with expression changes between the worker bees of the two species, 67% were expressed in higher levels in the antennae of Aml worker contrasting to 33% in the Acc worker. The overall higher expressions of proteins related to carbohydrate metabolism and energy production, molecular transporters, and antioxidation in the Aml workers compared with the Acc workers indicate the Aml workers require more antennal proteins for their olfactory mechanisms to perform efficient foraging activities than do the Acc worker bees. These data decipher the mechanisms of the western and eastern drone and worker bees acting in response to their different olfactory system in their distinct ecosystem.

分类号: Q7

  • 相关文献

[1]Differential antennal proteome comparison of adult honeybee drone, worker and queen (Apis mellifera L.). Fang, Yu,Song, Feifei,Zhang, Lan,Aleku, Dereje Woltedji,Han, Bin,Feng, Mao,Li, Jianke.

[2]Proteome Analysis Unravels Mechanism Underling the Embryogenesis of the Honeybee Drone and Its Divergence with the Worker (Apis mellifera lingustica). Fang, Yu,Feng, Mao,Han, Bin,Qi, Yuping,Hu, Han,Fan, Pei,Huo, Xinmei,Meng, Lifeng,Li, Jianke.

[3]Differential expressions of nuclear proteomes between honeybee (Apis mellifera L.) queen and worker larvae: A deep insight into caste pathway decisions. Begna, Desalegn,Han, Bin,Feng, Mao,Fang, Yu,Li, Jianke.

[4]Mitochondrial proteins differential expression during honeybee (Apis mellifera L.) queen and worker larvae caste determination. Begna, Desalegn,Fang, Yu,Feng, Mao,Li, Jianke.

[5]Novel aspects of understanding molecular working mechanisms of salivary glands of worker honeybees (Apis mellifera) investigated by proteomics and phosphoproteomics. Feng, Mao,Fang, Yu,Han, Bin,Zhang, Lan,Lu, Xiaoshan,Li, Jianke.

[6]Proteome Analysis of Hemolymph Changes during the Larval to Pupal Development Stages of Honeybee Workers (Apis mellifera ligustica). Woltedji, Dereje,Fang, Yu,Han, Bin,Feng, Mao,Li, Rongli,Lu, Xiaoshan,Li, Jianke. 2013

[7]Proteome and phosphoproteome analysis of honeybee (Apis mellifera) venom collected from electrical stimulation and manual extraction of the venom gland. Li, Rongli,Zhang, Lan,Fang, Yu,Han, Bin,Lu, Xiaoshan,Zhou, Tiane,Feng, Mao,Li, Jianke,Zhang, Lan. 2013

[8]Changes of proteome and phosphoproteome trigger embryo-larva transition of honeybee worker (Apis mellifera ligustica). Gala, Alemayehu,Fang, Yu,Woltedji, Dereje,Zhang, Lan,Han, Bin,Feng, Mao,Li, Jianke.

[9]Comparison of the colony development of two native bumblebee species Bombus ignitus and Bombus lucorum as candidates for commercial pollination in China. Wu, Jie,Peng, Wenjun,An, Jiandong,Huang, Jiaxing,Li, Jilian,Cai, Wanzhi. 2008

[10]Comparative transcriptome analysis of Apis mellifera antennae of workers performing different tasks. Nie, Hongyi,Xu, Shupeng,Xie, Cuiqin,Geng, Haiyang,Zhao, Yazhou,Li, Jianghong,Huang, Wei-fone,Lin, Yan,Li, Zhiguo,Su, Songkun,Zhao, Yazhou. 2018

[11]Antennal sensilla of female Encarsia guadeloupae Viggiani (Hymenoptera: Aphelinidae), a nymphal parasitoid of the spiraling whitefly Aleurodicus dispersus (Hemiptera: Aleyrodidae). Zhou, Hui,Wu, Wei-Jian,Niu, Li-Ming,Fu, Yue-Guan. 2013

[12]Molecular identification and expression patterns of odorant binding protein and chemosensory protein genes in Athetis lepigone (Lepidoptera: Noctuidae). Zhang, Ya-Nan,Zhu, Xiu-Yun,Xu, Ji-Wei,Zhang, Ya-Nan,Ma, Ji-Fang,Dong, Zhi-Ping,Kang, Ke,Zhang, Long-Wa. 2017

[13]Proteome Analysis of the Hemolymph, Mushroom Body, and Antenna Provides Novel Insight into Honeybee Resistance against Varroa Infestation. Hu, Han,Hao, Yue,Feng, Mao,Han, Bin,Fang, Yu,Wubie, Abebe Jenberie,Li, Jianke,Bienefeld, Kaspar,Wegener, Jakob,Zautke, Fred.

[14]Cloning and expression profile of ionotropic receptors in the parasitoid wasp Microplitis mediator (Hymenoptera: Braconidae). Dhiloo, Khalid Hussain,Zheng, Yao,Shan, Shuang,Zhang, Yong-Jun,Guo, Yu-Yuan,Peng, Yong,Li, Rui-Jun,Lu, Zi-Yun,Dhiloo, Khalid Hussain,Shan, Shuang.

[15]Molecular Characterization and Expression Pattern of Two General Odorant Binding Proteins from the Diamondback Moth, Plutella xylostella. Zhang, Zhi-Chun,Wang, Man-Qun,Zhang, Guoan,Lu, Yao-Bin.

[16]Candidate chemosensory genes identified in the endoparasitoid Meteorus pulchricornis (Hymenoptera: Braconidae) by antennal transcriptome analysis. Sheng, Sheng,Liao, Cheng-Wu,Zheng, Yu,Zhou, Yu,Xu, Yan,Song, Wen-Miao,Zhang, Jian,Wu, Fu-An,Sheng, Sheng,Zhang, Jian,Wu, Fu-An,He, Peng.

[17]Proteomic analysis of castor bean tick Ixodes ricinus: a focus on chemosensory organs. Dani, Francesca Romana,Ban, Liping,Song, Limei,Pelosi, Paolo,Dani, Francesca Romana.

[18]EXPRESSION OF SNMP1 AND SNMP2 GENES IN ANTENNAL SENSILLA OF Spodoptera exigua (HUBNER). Liu, Chengcheng,Zhang, Jin,Dong, Shuanglin,Liu, Chengcheng,Zhang, Jin,Liu, Yang,Wang, Guirong.

[19]Identification and tissue distribution of chemosensory protein and odorant binding protein genes in Athetis dissimilis (Lepidoptera: Noctuidae). Sun, Huizhong,Song, Yueqin,Wang, Xiaodong,Du, Jun,Cheng, Zhongji.

[20]Olfactory co-receptor identification and expression pattern analysis in polyembryonic endoparasitoid Macrocentrus cingulum. Ahmed, Tofael,Zhang, Tian-tao,Wang, Zhen-ying,He, Kang-lai,Bai, Shu-xiong,Ahmed, Tofael. 2015

作者其他论文 更多>>