Genome-wide identification of genes involved in raffinose metabolism in Maize

文献类型: 外文期刊

第一作者: Zhou, Mei-Liang

作者: Zhou, Mei-Liang;Zhang, Qian;Zhou, Ming;Shao, Ji-Rong;Zhou, Mei-Liang;Sun, Zhan-Min;Tang, Yi-Xiong;Wu, Yan-Min;Zhu, Xue-Mei

作者机构:

关键词: metabolic engineering;oligosaccharides;phylogenetic tree;raffinose;stachyose;Zea mays

期刊名称:GLYCOBIOLOGY ( 影响因子:4.313; 五年影响因子:4.942 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The raffinose family oligosaccharides (RFOs), such as raffinose and stachyose, are synthesized by a set of distinct galactosyltransferases, which sequentially add galactose units to sucrose. The accumulation of RFOs in plant cells are closely associated with the responses to environmental factors, such as cold, heat and drought stresses. Systematic analysis of genes involved in the raffinose metabolism has not been reported to date. Searching the recently available working draft of the maize genome, six kinds of enzyme genes were speculated, which should encode all the enzymes involved in the raffinose metabolism in maize. Expression patterns of some related putative genes were analyzed. The conserved domains and phylogenetic relationships among the deduced maize proteins and their homologs isolated from other plant species were revealed. It was discovered that some of the key enzymes, such as galactinol synthase (ZmGolS5, ZmGolS45 and ZmGolS37), raffinose synthase (ZmRS1, ZmRS2, ZmRS3 and ZmRS10), stachyose synthase (ZmRS8) and-fructofuranosidase, are encoded by multiple gene members with different expression patterns. These results reveal the complexity of the raffinose metabolism and the existence of metabolic channels for diverse RFOs in maize and provide useful information for improving maize stress tolerance through genetic engineering.

分类号: Q5

  • 相关文献

[1]Effects of Two Low Phytic Acid Mutations on Seed Quality and Nutritional Traits in Soybean (Glycine max L. Merr). Yuan, Feng-Jie,Shu, Qing-Yao,Yuan, Feng-Jie,Zhu, Dan-Hua,Fu, Xu-Tun,Dong, De-Kun,Zhu, Shen-Long,Li, Bai-Quan,Deng, Bo,Shu, Qing-Yao.

[2]Quantitative trait loci analysis of soluble sugar contents in soybean. Wang, Yueqiang,Chen, Pengyin,Zhang, Bo.

[3]Effects of dietary raffinose on growth, non-specific immunity, intestinal morphology and microbiome of juvenile hybrid sturgeon (Acipenser baeri Brandt female x A. schrenckii Brandt male). Xu, Guanling,Xing, Wei,Li, Tieliang,Ma, Zhihong,Liu, Caixia,Jiang, Na,Luo, Lin. 2018

[4]Changes in carbohydrates and organic acids in leaves and mesocarp tissues during melon (Cucumis melo L.) fruit development. Fu, Q. S.,Zhang, X. Y.,Zhu, H. Q.,Lv, L. H.,Wang, H. S.. 2012

[5]Production of xylobiose from the autohydrolysis explosion liquor of corncob using Thermotoga maritima xylanase B (XynB) immobilized on nickel-chelated Eupergit C. Tan, S. S.,Li, D. Y.,Jiang, Z. Q.,Zhu, Y. P.,Shi, B.,Li, L. T..

[6]An efficient synthesis of a dimer of the tetrasaccharide present in motif B of the Mycobacterium tuberculosis cell wall. Ning, J.

[7]Analysis of Chinese Olive Cultivars Difference by the Structural Characteristics of Oligosaccharides. Lin, Sen,Zhu, Qinqin,Wu, Dan,Jiang, Yueming,Zeng, Songjun,Yang, Bao,Wen, Lingrong,Zhao, Mouming,Lin, Sen,Zhu, Qinqin,Wu, Dan,Sun, Jian,Luo, Donghui. 2013

[8]Metabolic Engineering and Comparative Performance Studies of Synechocystis sp PCC 6803 Strains for Effective Utilization of Xylose. Ranade, Saurabh,Kaplan, Mecit,He, Qingfang,Zhang, Yan,Majeed, Waqar. 2015

[9]Progress of vitamin E metabolic engineering in plants. Chen, Shuangyan,Li, Hongjie,Liu, Gongshe. 2006

[10]Polysialic acid biosynthesis and production in Escherichia coli: current state and perspectives. Lin, Bai-Xue,Tao, Yong,Qiao, Yu,Shi, Bo.

[11]Promotion of nicotine biosynthesis in transgenic tobacco by overexpressing allene oxide cyclase from Hyoscyamus niger. Tang, Kexuan,Jiang, Keji,Pi, Yan,Hou, Rong,Sun, Xiaofen,Tang, Kexuan,Jiang, Keji,Jiang, Lili.

[12]Production and metabolic engineering of bioactive substances in plant hairy root culture. Zhou, Mei-Liang,Shao, Ji-Rong,Zhou, Mei-Liang,Tang, Yi-Xiong,Wu, Yan-Min,Zhou, Mei-Liang,Zhu, Xue-Mei.

[13]Trehalose Metabolism-Related Genes in Maize. Zhou, Mei-Liang,Zhang, Qian,Shao, Ji-Rong,Zhou, Mei-Liang,Sun, Zhan-Min,Liu, Bo-Xin,Zhang, Kai-Xuan,Tang, Yi-Xiong,Wu, Yan-Min,Chen, Li-Hui,Zhu, Xue-Mei. 2014

[14]Down-regulation of crambe fatty acid desaturase and elongase in Arabidopsis and crambe resulted in significantly increased oleic acid content in seed oil. Li, Xueyuan,Fan, Jing,Zhu, Li-Hua,Mei, Desheng,Liu, Qing,Singh, Surinder,Green, Allan,Zhou, Xue-Rong,Mei, Desheng,Liu, Qing,Singh, Surinder,Zhou, Xue-Rong,Fan, Jing.

[15]Soybean transcription factor GmMYBZ2 represses catharanthine biosynthesis in hairy roots of Catharanthus roseus. Zhou, Mei-Liang,Shao, Ji-Rong,Zhou, Mei-Liang,Wu, Yan-Min,Tang, Yi-Xiong,Hou, Hong-Li,Zhu, Xue-Mei.

[16]Metabolic engineering of microorganisms to produce omega-3 very long-chain polyunsaturated fatty acids. Gong, Yangmin,Wan, Xia,Jiang, Mulan,Hu, Chuanjiong,Hu, Hanhua,Huang, Fenghong.

[17]Bioactive compounds in functional buckwheat food. Shao, Ji-Rong,Zhang, Zhan-Lu,Zhou, Mei-Liang,Tang, Yi-Xiong,Shao, Ji-Rong,Zhang, Zhan-Lu,Xue, Wen-Tong,Zhang, Zhan-Lu,Zhou, Mei-Liang,Wu, Yan-Min,Tang, Yu,Li, Fa-Liang.

[18]An protocol for genetic transformation of Catharanthus roseus by Agrobacterium rhizogenes A4. Zhou, Mei-Liang,Wu, Yan-Min,Tang, Yi-Xiong,Zhou, Mei-Liang,Shao, Ji-Rong,Zhu, Xue-Mei.

[19]Metabolic engineering of Arabidopsis for remediation of different polycyclic aromatic hydrocarbons using a hybrid bacterial dioxygenase complex. Peng, Rihe,Fu, Xiaoyan,Tian, Yongsheng,Zhao, Wei,Zhu, Bo,Xu, Jing,Wang, Bo,Wang, Lijuan,Yao, Quanhong.

[20]Carotenoids in Staple Cereals: Metabolism, Regulation, and Genetic Manipulation. Zhai, Shengnan,Xia, Xianchun,He, Zhonghu,He, Zhonghu. 2016

作者其他论文 更多>>