Enhanced Biotransformation of DDTs by an Iron- and Humic-Reducing Bacteria Aeromonas hydrophila HS01 upon Addition of Goethite and Anthraquinone-2,6-Disulphonic Disodium Salt (AQDS)

文献类型: 外文期刊

第一作者: Cao, Fang

作者: Cao, Fang;Liu, Tong Xu;Wu, Chun Yuan;Li, Fang Bai;Li, Xiao Min;Yu, Huan Yun;Tong, Hui;Chen, Man Jia;Cao, Fang;Cao, Fang

作者机构:

关键词: Aeromonas hydrophila HS01;DDT transformation;reductive dechlorination;microbial iron reduction;AQDS

期刊名称:JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY ( 影响因子:5.279; 五年影响因子:5.269 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: A fermentative facultative anaerobe, strain HS01 isolated from subterranean sediment, was identified as Aeromonas hydrophila by 16S rRNA sequence analysis. The biotransformation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT), 1,1-dichloro-2,2-bis(4-chlorophenyl) ethylene (DDD), and 1,1-dichloro-2,2-bis (4-chlorophenyl) ethane (DDE) by HS01 was investigated in the presence of goethite and anthraquinone-2,6-disulphonic disodium salt (AQDS). The results demonstrated that HS01 was capable of reducing DDTs, goethite and AQDS. And goethite can significantly enhance the reduction of DDT, DDD and DDE to some extent, while the addition of AQDS can further accelerate the reduction of Fe(IU) and DDTs. The products of DDT transformation were identified as a large amount of dominant DDD, and small amounts of 1-chloro-2,2-bis-(p-chlorophenyl)ethane (DDMU), unsym-bis(p-chlorophenyl)-ethylene (DDNU), and 4,4'-dichlorobenzophenone (DBP). The results of cyclic voltammetry suggested that AQDS could increase the amounts of reactive biogenic Fe(II), resulting in the enhanced transformation of DDTs. This investigation gives some new insight in the fate of DDTs related to iron- and humic-reducing bacteria.

分类号: R15

  • 相关文献

[1]Reduction of iron oxides by Klebsiella pneumoniae L17: Kinetics and surface properties. Liu, Tong-xu,Li, Xiao-min,Li, Fang-bai,Zhang, Wei,Chen, Man-jia,Zhou, Shun-gui.

[2]Reductions of Fe(III) and pentachlorophenol linked with geochemical properties of soils from Pearl River Delta. Chen, Manjia,Tao, Liang,Li, Fangbai,Lan, Qing. 2014

[3]Interactively interfacial reaction of iron-reducing bacterium and goethite for reductive dechlorination of chlorinated organic compounds. Li XiaoMin,Li FangBai,Zhou ShunGui,Liu TongXu,Li XiaoMin,Li YongTao,Feng ChunHua,Li XiaoMin. 2009

[4]Anaerobic Transformation of DDT Related to Iron(III) Reduction and Microbial Community Structure in Paddy Soils. Chen, Manjia,Cao, Fang,Li, Fangbai,Liu, Chengshuai,Tong, Hui,Wu, Weijian,Hu, Min. 2013

[5]Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide. Li, F. B.,Li, X. M.,Zhou, S. G.,Zhuang, L.,Cao, F.,Huang, D. Y.,Xu, W.,Liu, T. X.,Li, X. M.,Cao, F.,Feng, C. H.,Li, X. M.,Cao, F..

[6]A humic substance analogue AQDS stimulates Geobacter sp abundance and enhances pentachlorophenol transformation in a paddy soil. Chen, Manjia,Chen, Dandan,Li, Fangbai,Qiao, Jiangtao,Tong, Hui,Liu, Chengshuai.

[7]Iron Reduction Coupled to Reductive Dechlorination in Red Soil: A Review. Chen, Manjia,Liu, Chengshuai,Li, Xiaomin,Li, Fangbai,Huang, Weilin.

[8]Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling. Ying, Guang-Guo,Ying, Guang-Guo,Yu, Xiang-Yang,Kookana, Rai S.,Yu, Xiang-Yang.

作者其他论文 更多>>