Protective efficacy against Chlamydophila psittaci by oral immunization based on transgenic rice expressing MOMP in mice

文献类型: 外文期刊

第一作者: Zhang, Xiu-Xiang

作者: Zhang, Xiu-Xiang;Zhang, Xiu-Xiang;Yu, Hui;Wang, Xiao-Hu;Luo, Sheng-Jun;Li, Xiu-Zhen;Li, Hao-Xin;Yuan, Zi-Guo;Zhu, Yan-Ping

作者机构:

关键词: MOMP;Transgenic rice;Oral immunization;Edible vaccine

期刊名称:VACCINE ( 影响因子:3.641; 五年影响因子:3.816 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Avian chlamydiosis is caused by Chlamydophila psittaci (Cp. psittaci) and major outer membrane protein (MOMP) of Cp. psittaci is an excellent vaccine candidate. In this study, the MOMP gene was expressed in rice callus by the Agrobacterium tumefaciensvector. The production of protein in transgenic rice seeds was confirmed and quantified by Western-blot and ELISA, the results demonstrating that the antigen was expressed stably. The transgenic rice seeds expressing the MOMP protein were administered by the oral route to BALB/c mice, which developed MOMP-specific serum IgG and fecal IgA antibodies and a splenocyte MOMP-specific proliferative response and significant levels of IFN-gamma, IL-2, IL-4, IL-5 and TGF-beta production. Immunization with MOMPtransgenic seeds induced partial protection (50%) against a lethal challenge with the highly virulent Cp. psittaci 6BC strain. Lung function after challenge was less affected compared non-MOMP immunized animals. The results demonstrate the feasibility ofusing transgenic rice seeds as an oral vaccine to generate protective immunity and reduce the lung lesions in mice against virulent Cp. psittaci 6BC strain. This finding has implications for further development of an oral vaccine against avian chlamydiosis.

分类号: R392

  • 相关文献

[1]Transformation of Two VP1 Genes of O- and Asia 1-Type Foot-and-Mouth Disease Virus into Maize. Zhang Su-zhi,Zhang Gui-ling,Rong Ting-zhao,Zhang Su-zhi,Pan Li,Zhou Peng,Zhang Yong-guang. 2011

[2]Short communication. Enhancement of the immune responses to vaccination against foot-and-mouth disease in mice by oral administration of Quillaja saponaria-A and extracts of Cochinchina momordica seed. Xiao, C. W.,Bao, G.,Rajput, Z. I.,Hu, S. H.,Rajput, Z. I.,Soomro, N. A.. 2013

[3]Production of transgenic rice new germplasm with strong resistance against two isolations of Rice stripe virus by RNA interference. Ma, Jin,Song, Yunzhi,Wu, Bin,Li, Kaidong,Zhu, Changxiang,Wen, Fujiang,Jiang, Mingsong. 2011

[4]Production of marker-free and RSV-resistant transgenic rice using a twin T-DNA system and RNAi. Jiang, Yayuan,Sun, Lin,Li, Kaidong,Song, Yunzhi,Zhu, Changxiang,Jiang, Mingsong.

[5]Dimeric artificial microRNAs mediate high resistance to RSV and RBSDV in transgenic rice plants. Sun, Lin,Lin, Chao,Du, Jinwen,Song, Yunzhi,Liu, Hongmei,Zhou, Shumei,Wen, Fujiang,Zhu, Changxiang,Jiang, Mingsong.

[6]Characteristics of CO2 exchange and chlorophyll fluorescence of transgenic rice with C-4 genes. Huang, XQ,Jiao, DM,Chi, W,Ku, MSB. 2002

[7]The characteristics of CO2 assimilation of photosynthesis and chlorophyll fluorescence in transgenic PEPC rice. Jiao, DM,Li, X,Huang, XQ,Wei, C,Kuang, TY,Maurice, KSB. 2001

[8]Establishment of a rice transgene flow model for predicting maximum distances of gene flow in Southern China. Yao, Kemin,Hu, Ning,Chen, Wanlong,Li, Renzhong,Yuan, Qianhua,Wang, Feng,Qian, Qian. 2008

[9]Expression of an elicitor-encoding gene from Magnaporthe grisea enhances resistance against blast disease in transgenic rice. Qiu, Dewen,Mao, Jianjun,Yang, Xiufen,Zeng, Hongmei. 2009

[10]Isolation of the endosperm-specific LPAAT gene promoter from coconut (Cocos nucifera L.) and its functional analysis in transgenic rice plants. Zheng, Yusheng,Wang, Zhekui,Li, Dongdong,Xu, Li,Zhou, Peng,Ye, Rongjian,Lin, Yongjun,Ye, Rongjian,Lin, Yongjun. 2010

[11]Lethal and Sub-Lethal Effects of Transgenic Rice Containing cry1Ac and CpTI Genes on the Pink Stem Borer, Sesamia inferens (Walker). Han Lan-zhi,Hou Mao-lin,Wu Kong-ming,Peng Yu-fa,Wang Feng. 2011

[12]Event-specific qualitative and quantitative detection of transgenic rice Kefeng-6 by characterization of the transgene flanking sequence. Wang, Wei-Xia,Lai, Feng-Xiang,Fu, Qiang,Zhu, Ting-Heng. 2011

[13]Transgenic fertile japonica rice plants expressing a modified crylA(b) gene resistant to yellow stem borer. Wu, C,Fan, Y,Zhang, C,Oliva, N,Datta, SK. 1997

[14]Impacts of transgenic cry1Ab rice on non-target planthoppers and their main predator Cyrtorhinus lividipennis (Hemiptera : Miridae) - A case study of the compatibility of Bt rice with biological control. Liu, Zhi-Cheng,Ye, Gong-yin,Shen, Zhi-cheng,Hu, Cui,Peng, Yu-fa,Altosaar, Illimar,Shelton, Anthony M.. 2007

[15]Functional and numerical responses of Cyrtorhinus lividipennis to eggs of Nilaparvata lugens are not affected by genetically modified herbicide-tolerant rice. Huang Qian,Long Li-ping,Ling Yan,Huang Suo-sheng,Wu Bi-qiu,Huang Feng-kuan,Cai Jian-he,Chen Yu-chong,Xiao Guo-ying. 2015

[16]Efficient Agrobacterium-mediated transformation of rice by phosphomannose isomerase/mannose selection. Ding Zai-Song,Zhao Ming,Jing Yu-Xiang,Li Liang-Bi,Kuang Ting-Nin. 2006

[17]Characterization of competitive interactions in the coexistence of Bt-transgenic and conventional rice. Liu, Yongbo,Li, Junsheng,Ge, Feng,Liang, Yuyong,Wu, Gang. 2015

[18]Ectopic expression of the spike protein of Rice Ragged Stunt Oryzavirus in transgenic rice plants inhibits transmission of the virus to insects. Shao, CG,Wu, JH,Zhou, GY,Sun, G,Peng, BZ,Lei, JL,Jin, DD,Chen, SX,Upadhyaya, NM,Waterhouse, P,Gong, ZX. 2003

[19]Characterization of OsDREB6 responsive to osmotic and cold stresses in rice. Ke, Ya-Guang,Yang, Zhi-Jun,Luo, Li-Jun,Ke, Ya-Guang,Yu, Shun-Wu,Li, Tian-Fei,Wu, Jin-Hong,Gao, Huan,Luo, Li-Jun,Fu, Ya-Ping.

[20]Baseline susceptibility of Cnaphalocrocis medinalis (Lepidoptera : Pyralidae) to Bacillus thuringiensis toxins in China. Hou, M. L.,Peng, Y. F.,Liu, P. L..

作者其他论文 更多>>