Molecular cloning and expression analysis of a putative sesquiterpene synthase gene from tea plant (Camellia sinensis)

文献类型: 外文期刊

第一作者: Fu, Jian-yu

作者: Fu, Jian-yu

作者机构:

关键词: Tea plant;Camellia sinensis;Cstps1;Terpene synthase;Gene

期刊名称:ACTA PHYSIOLOGIAE PLANTARUM ( 影响因子:2.354; 五年影响因子:2.711 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: A putative gene encoding germacrene D synthase (GenBank Accession No. JQ247185) from tea plant (Camellia sinensis) was isolated by rapid amplification of cDNA ends for the first time, which was designated as tea plant gene terpene synthase 1 (Cstps1).This full-length cDNA was 2,090 nucleotides, and the open reading frame was 1,704 bp encoding polypeptides of 568 amino acids. The deduced amino acid sequence contained two characteristic conserved motifs of RRx8W and DDxxD, which showed high homology with sesquiterpene synthases of angiosperms, and the highest level of similarity was 73 % to germacrene D synthase from Actinidia deliciosa (Accession NO. AAX16121.1). Phylogenetic analysis indicated that Cstps1 belonged to the terpene synthase-a subfamily of plant, which was the largest clade of terpene synthases and mainly composed of sesquiterpene synthases. The Cstps1 expression was detected in different organs, with high expression levels in leaf and flower, weak expression in stem and root. Real-time qRT-PCR indicated that Cstps1 could be induced by insect damage, this result suggested Cstps1 might have potential ecological function during tea plant defense response.

分类号: Q94

  • 相关文献

[1]Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses during tea manufacturing. Zhou, Ying,Zeng, Lanting,Liu, Xiaoyu,Gui, Jiadong,Mei, Xin,Fu, Xiumin,Yang, Ziyin,Zhou, Ying,Zeng, Lanting,Liu, Xiaoyu,Gui, Jiadong,Mei, Xin,Fu, Xiumin,Yang, Ziyin,Zeng, Lanting,Liu, Xiaoyu,Gui, Jiadong,Yang, Ziyin,Dong, Fang,Tang, Jingchi,Tang, Jingchi,Zhang, Lingyun.

[2]Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis). Li, Chun-Fang,Wang, Xin-Chao,Yao, Ming-Zhe,Chen, Liang,Yang, Ya-Jun,Zhu, Yan,Yu, Yao,Zhao, Qiong-Yi,Li, Xuan,Wang, Sheng-Jun,Luo, Da. 2015

[3]Biochemical and transcriptomic analyses reveal different metabolite biosynthesis profiles among three color and developmental stages in 'Anji Baicha' (Camellia sinensis). Li, Chun-Fang,Xu, Yan-Xia,Ma, Jian-Qiang,Jin, Ji-Qiang,Huang, Dan-Juan,Yao, Ming-Zhe,Ma, Chun-Lei,Chen, Liang,Li, Chun-Fang. 2016

[4]Identification and Evaluation of Reliable Reference Genes for Quantitative Real-Time PCR Analysis in Tea Plant (Camellia sinensis (L.) O. Kuntze). Hao, Xinyuan,Yang, Yajun,Xiao, Bin,Hao, Xinyuan,Horvath, David P.,Chao, Wun S.,Hao, Xinyuan,Yang, Yajun,Wang, Xinchao,Hao, Xinyuan,Yang, Yajun,Wang, Xinchao. 2014

[5]The validation of two major QTLs related to the timing of spring bud flush in Camellia sinensis. Tan, Li-Qiang,Peng, Min,Zou, Yao,Chen, Sheng-Xiang,Li, Pin-Wu,Tang, Qian,Xu, Li-Yi,Wang, Li-Yuan,Wei, Kang,Cheng, Hao,Xu, Li-Yi,Wang, Li-Yuan,Wei, Kang,Cheng, Hao. 2018

[6]Exogenous Melatonin Alleviates Cold Stress by Promoting Antioxidant Defense and Redox Homeostasis in Camellia sinensis L.. Li, Xin,Wei, Ji-Peng,Li, Yang,Zhang, Lan,Han, Wen-Yan,Scott, Eric R.,Liu, Jian-Wei,Guo, Shuai. 2018

[7]Genotypic variation of beta-carotene and lutein contents in tea germplasms, Camellia sinensis (L.) O. Kuntze. Wang, Xin-Chao,Chen, Liang,Ma, Chun-Lei,Yao, Ming-Zhe,Yang, Ya-Jun. 2010

[8]Effects of sunlight exclusion on the profiles of monoterpene biosynthesis and accumulation in grape exocarp and mesocarp. Zhang, Erpeng,Li, Shaohua,Liang, Zhenchang,Fan, Peige,Zhang, Erpeng,Li, Shaohua,Liang, Zhenchang,Fan, Peige,Chai, Fengmei,Chai, Fengmei,Zhang, Haohao. 2017

[9]Genome-wide analysis of terpene synthases in soybean: Functional characterization of GmTPS3. Huang, Fang,Wang, Xia,Wang, Jiao,Yu, Deyue,Liu, Jianyu,Zhang, Man,Zheng, Rui.

[10]Microbial-type terpene synthase genes occur widely in nonseed land plants, but not in seed plants. Jia, Qidong,Chen, Feng,Li, Guanglin,Fu, Jianyu,Chen, Xinlu,Xiong, Wangdan,Chen, Feng,Li, Guanglin,Kollner, Tobias G.,Gershenzon, Jonathan,Fu, Jianyu,Crandall-Stotler, Barbara J.,Bowman, John L.,Weston, David J.,Zhang, Yong,Chen, Li,Xie, Yinlong,Wong, Gane Ka-Shu,Li, Fay-Wei,Rothfels, Carl J.,Larsson, Anders,Graham, Sean W.,Stevenson, Dennis W.,Wong, Gane Ka-Shu,Wong, Gane Ka-Shu.

[11]SSR-based genetic mapping and QTL analysis for timing of spring bud flush, young shoot color, and mature leaf size in tea plant (Camellia sinensis). Tan, Li-Qiang,Wang, Li-Yuan,Xu, Li-Yi,Wu, Li-Yun,Zhang, Cheng-Cai,Wei, Kang,Bai, Pei-Xian,Li, Hai-Lin,Cheng, Hao,Tan, Li-Qiang,Xu, Li-Yi,Peng, Min,Qi, Gui-Nian,Wang, Li-Yuan,Wu, Li-Yun,Zhang, Cheng-Cai,Wei, Kang,Bai, Pei-Xian,Li, Hai-Lin,Cheng, Hao. 2016

[12]Probing Behavior of Empoasca vitis (Homoptera: Cicadellidae) on Resistant and Susceptible Cultivars of Tea Plants. Miao, Jin,Han, Bao-Yu,Zhang, Qing-He. 2014

[13]Transcriptomic analysis of the effects of three different light treatments on the biosynthesis of characteristic compounds in the tea plant by RNA-Seq. Hao, Xinyuan,Li, Litian,Hu, Yurong,Zhou, Chao,Wang, Xinchao,Wang, Lu,Zeng, Jianming,Yang, Yajun. 2016

[14]Isolation and expression features of hexose kinase genes under various abiotic stresses in the tea plant (Camellia sinensis). Li, Na-na,Qian, Wen-jun,Wang, Lu,Cao, Hong-li,Hao, Xin-yuan,Yang, Ya-jun,Wang, Xin-chao,Li, Na-na,Wang, Lu,Cao, Hong-li,Hao, Xin-yuan,Yang, Ya-jun,Wang, Xin-chao,Qian, Wen-jun.

[15]Development of a 44 K custom oligo microarray using 454 pyrosequencing data for large-scale gene expression analysis of Camellia sinensis. Wang, Lu,Wang, Xinchao,Yue, Chuan,Cao, Hongli,Zhou, Yanhua,Yang, Yajun,Wang, Lu,Wang, Xinchao,Zhou, Yanhua,Wang, Xinchao,Yue, Chuan,Cao, Hongli,Yang, Yajun.

[16]Attractiveness of host volatiles combined with background visual cues to the tea leafhopper, Empoasca vitis. Cai, Xiao-Ming,Xu, Xiu-Xiu,Bian, Lei,Luo, Zong-Xiu,Xin, Zhao-Jun,Chen, Zong-Mao,Cai, Xiao-Ming.

[17]Herbivore species, infestation time, and herbivore density affect induced volatiles in tea plants. Cai, Xiao-Ming,Sun, Xiao-Ling,Dong, Wen-Xia,Wang, Guo-Chang,Chen, Zong-Mao,Cai, Xiao-Ming,Wang, Guo-Chang.

[18]Analyses of transcriptome profiles and selected metabolites unravel the metabolic response to NH4+ and NO3- as signaling molecules in tea plant (Camellia sinensis L.). Liu, Mei-Ya,Zhang, Qunfeng,Tang, Dandan,Shi, Yuanzhi,Ma, Lifeng,Yi, Xiaoyun,Ruan, Jianyun,Tang, Dandan,Burgos, Asdrubal.

[19]Differential expression of gibberellin- and abscisic acid-related genes implies their roles in the bud activity-dormancy transition of tea plants. Yue, Chuan,Cao, Hongli,Guo, Yuqiong,Ye, Naixing,Yue, Chuan,Cao, Hongli,Hao, Xinyuan,Zeng, Jianming,Qian, Wenjun,Yang, Yajun,Wang, Xinchao. 2018

[20]Cloning of a new glutathione peroxidase gene from tea plant (Camellia sinensis) and expression analysis under biotic and abiotic stresses. Fu, Jian-Yu. 2014

作者其他论文 更多>>