Identification of the genes and pathways associated with pigment gland morphogenesis in cotton by transcriptome profiling of near-isogenic lines

文献类型: 外文期刊

第一作者: Quan Sun;;Shengwei Li;;Min Chen

作者: Quan Sun;Shengwei Li;Min Chen;Yingfan Cai;Jianchuan Mo;Xiaohong He;Huaizhong Jiang;JinggaoLiu;Kairong Lei

作者机构:

关键词: cotton;GeneChip;morphogenesis;near-isogenic lines;pigment gland;SSH

期刊名称:BIOLOGIA ( 影响因子:1.35; 五年影响因子:1.139 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Cottonseed protein is underutilized due to the presence of pigment gland containing a toxic compound called gossypol. Cotton produces gossypol and related compounds in various tissues to protect itself against microbial, insect, and rodent attacks. Understanding the mechanism of cotton pigment gland formation and regulation of gossypol biosynthesis will greatly facilitate the research efforts in developing a cotton variety with a gossypol free seed and normally glanded foliage. In this study we make use of near-isogenic lines of cotton pigment gland to screen the genes related to gland morphogenesis applying both GeneChip and suppression subtractive hybridization (SSH) methods. We identified 880 differentially expressed genes associated with gland morphogenesis in cotton by comparing transcriptome profiles of cotton from glandless and glanded near-isogenic lines using a GeneChip. Gene ontology (GO) analysis showed that 880 genes were distributed mainly among the following GO categories: cellular process (14.45%), physiological process (14.23%), catalytic activity (9.21%), metabolism (8.99%), and cell parts (5.24%). Molecular pathway analysis revealed that these differentially expressed genes were involved in 58 KEGG pathways. Differentially expressed genes were also identified and isolated using suppression subtractive hybridization (SSH) with the same near-isogenic lines. A total of 147 ESTs were identified whose expression was either up- or down-regulated. Sequencing and BLAST analysis indicated that some of these genes were novel, while others were related to energy metabolism, transcription factors, and biotic responses. 13 genes were found to be differentially expressed both in SSH and GeneChip analysis. The expression pattern of these genes was verified by real-time PCR. The gene expression profiles produced in this study provide useful information on the molecular mechanism and regulation of gland formation and the related process in cotton. Of particular interest for future study are the genes identified by both SSH and GeneChip analysis. The outcomes are helping for our understanding of the development of specialised structures such as trichomes in plant species, from an applied and basic science perspective and promoting the application in molecular breeding.

分类号: Q

  • 相关文献

[1]Gene expression profiling during gland morphogenesis of a mutant and a glandless upland cotton. Sun, Quan,Cai, Yingfan,Xie, Yongfang,Mo, Jianchuan,Li, Shengwei,Jiang, Huaizhong,Pan, Zheng,Gao, Yunling,Chen, Min,He, Xiaohong,Yuan, Youlu,Shi, Yuzhen. 2010

[2]Histological and Ultrastructural Observation Reveals Significant Cellular Differences between Agrobacterium Transformed Embryogenic and Non-embryogenic Calli of Cotton. Shang, Hai-Hong,Liu, Chuan-Liang,Zhang, Chao-Jun,Li, Feng-Lian,Hong, Wei-Dong,Li, Fu-Guang.

[3]Analysis on Differentially Expressed Genes of Muscle Tissues in Rugao Chicken at the Ages of 2 and 12 Weeks by Microarray. Luan, De Qin,Bin Chang, Guo,Zhen, Ting,Huang, Zheng Yang,Zhou, Wei,Chen, Guo Hong,Liu, Yan. 2011

[4]Direct somatic embryogenesis from leaf and petiole explants of Spathiphyllum 'Supreme' and analysis of regenerants using flow cytometry. Zhao, Jietang,Henny, Richard J.,Chen, Jianjun,Cui, Jin,Liu, Juanxu,Liao, Feixiong,Chen, Jianjun. 2012

[5]OsCD1 encodes a putative member of the cellulose synthase-like D sub-family and is essential for rice plant architecture and growth. Luan, Weijiang,Liu, Yuqin,Zhang, Fengxia,Song, Yuanli,Wang, Zhengying,Peng, Yongkang,Sun, Zongxiu.

[6]Short panicle1 encodes a putative PTR family transporter and determines rice panicle size. Li, Shengben,Fu, Zhiming,Zeng, Dali,Meng, Xiangbing,Zhang, Jian,Li, Jiayang,Wang, Yonghong,Li, Shengben,Fu, Zhiming,Zeng, Dali,Meng, Xiangbing,Zhang, Jian,Li, Jiayang,Wang, Yonghong,Qian, Qian,Zeng, Dali,Zhu, Xudong,Kyozuka, Junko,Maekawa, Masahiko.

[7]BENT UPPERMOST INTERNODE1 Encodes the Class II Formin FH5 Crucial for Actin Organization and Rice Development. Yang, Weibing,Gao, Mingjun,Zeng, Longjun,Li, Qun,He, Zuhua,Ren, Sulin,Zheng, Yiyan,Wang, Juan,Huang, Shanjin,Zhang, Xiaoming,Ye, Shenghai,Qi, Yongbin.

[8]Transcription profiles of boron-deficiency-responsive genes in citrus rootstock root by suppression subtractive hybridization and cDNA microarray. Zhou, Gao-Feng,Liu, Yong-Zhong,Sheng, Ou,Wei, Qing-Jiang,Yang, Cheng-Quan,Peng, Shu-Ang,Zhou, Gao-Feng,Sheng, Ou,Wei, Qing-Jiang. 2015

[9]Construction and application of EST library from Setaria italica in response to dehydration stress. Zhang, Jinpeng,Liu, Tingsong,Fu, Junjie,Zhu, Yun,Jia, Jinping,Zheng, Jun,Zhao, Yinhe,Zhang, Ying,Wang, Guoying.

[10]Comparative transcript profiling of gene expression of fresh and frozen-thawed bull sperm. Chen, Xiaoli,Zhu, Huabin,Hao, Haisheng,Zhao, Xueming,Qin, Tong,Wang, Dong,Wang, Yonggui.

[11]Latest Advances in Watermelon Genomics. Guo, Shaogui,Xu, Yong,Zhang, Haiying,Gong, Guoyi,Guo, Shaogui,Zheng, Yi,Fei, Zhangjun,Huang, Sanwen,Yi, Hongping,Wu, Mingzhu,Fei, Zhangjun,Zheng, Yi. 2010

[12]Alteration of gene expression profile in the roots of wild diploid Arachis duranensis inoculated with Ralstonia solanacearum. Chen, Y. N.,Ren, X. P.,Zhou, X. J.,Huang, L.,Huang, J. Q.,Yan, L. Y.,Lei, Y.,Wei, W. H.,Jiang, H. F.,Qi, Y..

[13]Differential gene expression in ulva prolifera under low light and low temperature conditions. Li, Youxun,Zhang, Xiaowen,Xu, Dong,Zhuang, Zhimeng,Ye, Naihao,Li, Youxun.

[14]Characterization and identification of cold tolerant near-isogenic lines in rice. Zhou, Lei,Hu, Guanglong,Pan, Yinghua,Zhang, Hongliang,Li, Jinjie,Li, Zichao,Zhou, Lei,Hu, Guanglong,Pan, Yinghua,Zhang, Hongliang,Li, Jinjie,Li, Zichao,Zeng, Yawen,Yang, Shuming,Zhou, Lei,You, Aiqing,Hu, Guanglong. 2012

[15]Effect of wx genes on amylose content, physicochemical properties of wheat starch, and the suitability of waxy genotype for producing Chinese crisp sticks. Ma, Hongbo,Lv, Guofeng,Wang, Xiue,Cheng, Shunhe,Zhang, Xiao,Gao, Derong,Zhang, Boqiao,Lv, Guofeng,Wu, Ronglin,Cheng, Xiaoming,Cheng, Shunhe,Bie, Tongde,Wang, Canguo. 2013

[16]Determination of Mineral Elements in Brown Rice of Near-Isogenic Lines Population for Japonica Rice by ICP-AES. Wang Lu-xiang,Li Qi-wan,Zeng Ya-wen,Sun Zheng-hai,Yang Shu-ming,Du Juan,Pu Xiao-ying,Du Wei,Zeng Ya-wen,Xiao Feng-hui,Sun Zheng-hai. 2008

[17]Lack of fitness costs and inheritance of resistance to Bacillus thuringiensis Cry1Ac toxin in a near-isogenic strain of Plutella xylostella (Lepidoptera: Plutellidae). Zhu, Xun,Yang, Yanjv,Wu, Qingjun,Wang, Shaoli,Xie, Wen,Guo, Zhaojiang,Kang, Shi,Xia, Jixing,Zhang, Youjun.

[18]Effects of the dominant glandless gene Gl(2)(e) on agronomic and fibre characters of Upland cotton. Y.L Yuan,,Y.H Chen,C.M Tang,S.R Jing,S.L Liu,J.J Pan,R.J Kohel,T.Z Zhang. 2000

[19]Precise mapping of a quantitative trait locus interval for spike length and grain weight in bread wheat (Triticum aestivum L.). Wu, Xinyi,Cheng, Ruiru,Xue, Shulin,Kong, Zhongxin,Wan, Hongshen,Li, Guoqiang,Huang, Yulong,Jia, Haiyan,Zhang, Lixia,Ma, Zhengqiang,Jia, Jizeng. 2014

[20]Construction and characterisation of near-isogenic Plutella xylostella (Lepidoptera: Plutellidae) strains resistant to Cry1Ac toxin. Zhu, Xun,Lei, Yanyuan,Yang, Yanjv,Wu, Qingjun,Wang, Shaoli,Xie, Wen,Guo, Zhaojiang,Fu, Wei,Zhang, Youjun,Zhu, Xun,Li, Jianhong,Baxter, Simon W..

作者其他论文 更多>>