An integrated proteomics reveals pathological mechanism of honeybee (Apis cerena) sacbrood disease

文献类型: 外文期刊

第一作者: Han, Bin

作者: Han, Bin;Zhang, Lan;Feng, Mao;Fang, Yu;Li, Jianke

作者机构:

关键词: 2-DE;Chinese honeybee;Chinese sacbrood virus;label-free LC-MS;phosphoproteome;proteome

期刊名称:JOURNAL OF PROTEOME RESEARCH ( 影响因子:4.466; 五年影响因子:4.352 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Viral diseases of honeybees are a major challenge for the global beekeeping industry. Chinese indigenous honeybee (Apis cerana cerana, Acc) is one of the major Asian honeybee species and has a dominant population with more than 3 million colonies. However, Acc is frequently threatened by a viral disease caused by Chinese sacbrood virus (CSBV), which leads to fatal infections and eventually loss of the entire colony. Nevertheless, knowledge on the pathological mechanism of this deadly disease is still unknown. Here, an integrated gel-based and label-free liquid chromatography-mass spectrometry (LC-MS) based proteomic strategy was employed to unravel the molecular event that triggers this disease, by analysis of proteomics and phosphoproteomics alterations between healthy and CSBV infected worker larvae. There were 180 proteins and 19 phosphoproteins which altered their expressions after the viral infection, of which 142 proteins and 12 phosphoproteins were down-regulated in the sick larvae, while only 38 proteins and 7 phosphoproteins were up-regulated. The infected worker larvae were significantly affected by the pathways of carbohydrate and energy metabolism, development, protein metabolism, cytoskeleton, and protein folding, which were important for supporting organ generation and tissue development. Because of abnormal metabolism of these pathways, the sick larvae fail to pupate and eventually death occurs. Our data, for the first time, comprehensively decipher the molecular underpinnings of the viral infection of the Acc and are potentially helpful for sacbrood disease diagnosis and medicinal development for the prevention of this deadly viral disease.

分类号: Q7

  • 相关文献

[1]Novel aspects of understanding molecular working mechanisms of salivary glands of worker honeybees (Apis mellifera) investigated by proteomics and phosphoproteomics. Feng, Mao,Fang, Yu,Han, Bin,Zhang, Lan,Lu, Xiaoshan,Li, Jianke.

[2]Proteome and phosphoproteome analysis of honeybee (Apis mellifera) venom collected from electrical stimulation and manual extraction of the venom gland. Li, Rongli,Zhang, Lan,Fang, Yu,Han, Bin,Lu, Xiaoshan,Zhou, Tiane,Feng, Mao,Li, Jianke,Zhang, Lan. 2013

[3]Changes of proteome and phosphoproteome trigger embryo-larva transition of honeybee worker (Apis mellifera ligustica). Gala, Alemayehu,Fang, Yu,Woltedji, Dereje,Zhang, Lan,Han, Bin,Feng, Mao,Li, Jianke.

[4]The proteome and phosphoproteome of maize pollen uncovers fertility candidate proteins. Chao, Qing,Gao, Zhi-fang,Wang, Yue-feng,Mei, Ying-chang,Zhao, Biligen-gaowa,Wang, Bai-chen,Li, Zhe,Huang, Xia-he,Wang, Ying-chun,Li, Liang,Jiang, Yu-bo.

[5]Proteomic analysis of responsive root proteins of Fusarium oxysporum-infected watermelon seedlings. Zhang, Man,Xu, Jinhua,Liu, Guang,Yao, Xiefeng,Ren, Runsheng,Yang, Xingping. 2018

[6]Modulation of protein expression in alfalfa (&ITMedicago sativa&IT L.) root and leaf tissues by &ITFusarium proliferatum&IT. Cong Li-li,Long Rui-cai,Kang Jun-mei,Zhang Tie-jun,Wang Zhen,Yang Qing-chuan,Sun Yan,Li Ming-na,Cong Li-li. 2017

[7]Unraveling molecular mechanistic differences in liver metabolism between lean and fat lines of Pekin duck (Anas platyrhynchos domestica): A proteomic study. Zheng, Aijuan,Chang, Wenhuan,Zhang, Shu,Cai, Huiyi,Chen, Guilan,Lou, Ruiying,Liu, Guohua,Hou, Shuisheng.

[8]Drought stress impact on leaf proteome variations of faba bean (Vicia faba L.) in the Qinghai-Tibet Plateau of China. Li, Ping,Wu, Xuexia,Liu, Yujiao,Li, Ping,Liu, Yujiao,Zhang, Yanxia,Li, Ping,Liu, Yujiao. 2018

[9]Proteomic analysis of the phenotype of the scaleless wings mutant in the silkworm, Bombyx mori. Shi, Xiao-Feng,Han, Bin,Li, Yi-Nu,Zhang, Zhi-Fang,Han, Bin,Yi, Yong-Zhu,Shen, Xing-Jia,Li, Xiao-Ming.

[10]Chinese Sacbrood virus infection in Asian honey bees (Apis cerana cerana) and host immune responses to the virus infection. Liu Shan,Wang Liuhao,Tang Yujie,Wu Jie,Li Jilian,Chen Yanping,Guo Jun. 2017

[11]Proteomic analysis of heterosis in the leaves of sorghum-sudangrass hybrids. Han, Pingan,Lu, Xiaoping,Dong, Jing,Xue, Chunlei,Mi, Fugui,Li, Jianke,Han, Bin,Zhang, Xiaoyu. 2016

[12]Quantitative Proteomic Analysis of Duck Ovarian Follicles Infected with Duck Tembusu Virus by Label-Free LC-MS. Han, Kaikai,Zhao, Dongmin,Liu, Yuzhuo,Liu, Qingtao,Huang, Xinmei,Yang, Jing,An, Fengjiao,Lin, Yin,Han, Kaikai,Zhao, Dongmin,Liu, Yuzhuo,Liu, Qingtao,Huang, Xinmei,Yang, Jing,An, Fengjiao,Lin, Yin. 2016

[13]The Eukaryote-Like Serine/Threonine Kinase STK Regulates the Growth and Metabolism of Zoonotic Streptococcus suis. Zhang, Chunyan,Sun, Wen,Dong, Mengmeng,Liu, Wanquan,Li, Lu,Xu, Zhuofei,Zhou, Rui,Tan, Meifang,Gao, Ting,Li, Lu,Xu, Zhuofei,Zhou, Rui. 2017

[14]A comparative analysis of phosphoproteome in ovine muscle at early postmortem in relationship to tenderness. Li, Xin,Chen, Lijuan,He, Fan,Li, Meng,Zhang, Dequan,Shen, Qingwu. 2017

[15]A Comprehensive Proteomic Survey of ABA-Induced Protein Phosphorylation in Rice (Oryza sativa L.). Qiu, Jiehua,Hou, Yuxuan,Wang, Yifeng,Li, Zhiyong,Zhao, Juan,Tong, Xiaohong,Lin, Haiyan,Wei, Xiangjin,Zhang, Jian,Lin, Haiyan,Ao, Hejun. 2017

[16]Phosphoproteomic Analysis of Protein Phosphorylation Networks in the Hypopharyngeal Gland of Honeybee Workers (Apis mellifera ligustica). Qi, Yuping,Fan, Pei,Hao, Yue,Han, Bin,Fang, Yu,Feng, Mao,Cui, Ziyou,Li, Jianke,Fan, Pei,Cui, Ziyou,Cui, Ziyou.

[17]In-Depth Phosphoproteomic Analysis of Royal Jelly Derived from Western and Eastern Honeybee Species. Han, Bin,Fang, Yu,Feng, Mao,Lu, Xiaoshan,Huo, Xinmei,Meng, Lifeng,Wu, Bin,Li, Jianke.

[18]Brain Membrane Proteome and Phosphoproteome Reveal Molecular Basis Associating with Nursing and Foraging Behaviors of Honeybee Workers. Han, Bin,Fang, Yu,Feng, Mao,Hu, Han,Hao, Yue,Ma, Chuan,Huo, Xinmei,Meng, Lifeng,Zhang, Xufeng,Wu, Fan,Li, Jianke.

[19]A comprehensive quantitative phosphoproteome analysis of rice in response to bacterial blight. Hou, Yuxuan,Qiu, Jiehua,Tong, Xiaohong,Wei, Xiangjin,Huang, Shiwen,Zhang, Jian,Nallamilli, Babi R.,Wu, Weihuai. 2015

[20]The Phosphoproteomic Response of Rice Seedlings to Cadmium Stress. Zhong, Min,Li, Sanfeng,Huang, Fenglin,Qiu, Jiehua,Zhang, Jian,Sheng, Zhonghua,Tang, Shaoqing,Wei, Xiangjin,Hu, Peisong,Zhong, Min,Huang, Fenglin. 2017

作者其他论文 更多>>