Transcription of ORFs on RNA2 and RNA4 of Rice stripe virus terminate at an AUCCGGAU sequence that is conserved in the genus Tenuivirus

文献类型: 外文期刊

第一作者: Wu, Gentu

作者: Wu, Gentu;Wu, Gentu;Lu, Yuwen;Zheng, Hongying;Lin, Lin;Yan, Fei;Chen, Jianping

作者机构:

关键词: Palindromic sequence;Rice stripe virus;Termination;Transcription

期刊名称:VIRUS RESEARCH ( 影响因子:3.303; 五年影响因子:3.445 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Rice stripe virus, the type member of the genus Tenuivirus, has four genomic RNAs. RNAs 2-4 have an ambisense coding strategy and the noncoding intergenic regions (IRs) separating the two ORFs are thought to function in termination of transcription. Sequencing the 3'-untranslated region of transcripts from RNA2 and RNA4 in virus-infected Oryza sativa (the natural host), Nicotiana benthamiana (an experimental host) and Laodelphax striatellus (the vector), showed that the sequences of p2 and pc2 transcripts on RNA2, and p4 and pc4 transcripts on RNA4 terminated with high frequency at a palindromic sequence AUCCGGAU that was located in a region predicted to form a hairpin secondary structure. The AUCCGGAU sequence is highly conserved in RNA2 and RNA4 of different RSV isolates and is also conserved among the corresponding genomic RNAs of other tenuiviruses. p3 transcripts from the three hosts all had the same dominant termination site, while pc3 transcripts from different hosts terminated at different sites. All pc1 3'-UTR sequences ended at the 3'-end of the viral complementary strand of RNA1 (data not shown), indicating that the pc1 transcript may be synthesized by runoff of viral polymerase, but had no characteristic termination sequence. This is the first experimental report determining the exact transcription termination sites of a plant ambisense virus, and has implications for understanding the transcription of RSV as well as other plant viruses with an ambisense coding strategy.

分类号: R37

  • 相关文献

[1]Production of transgenic rice new germplasm with strong resistance against two isolations of Rice stripe virus by RNA interference. Ma, Jin,Song, Yunzhi,Wu, Bin,Li, Kaidong,Zhu, Changxiang,Wen, Fujiang,Jiang, Mingsong. 2011

[2]Production of marker-free and RSV-resistant transgenic rice using a twin T-DNA system and RNAi. Jiang, Yayuan,Sun, Lin,Li, Kaidong,Song, Yunzhi,Zhu, Changxiang,Jiang, Mingsong.

[3]Virus resistance obtained in transgenic tobacco and rice by RNA interference using promoters with distinct activity. Zhang, C.,Song, Y.,Jiang, F.,Jiang, Y.,Zhu, C.,Wen, F.,Li, G..

[4]Dimeric artificial microRNAs mediate high resistance to RSV and RBSDV in transgenic rice plants. Sun, Lin,Lin, Chao,Du, Jinwen,Song, Yunzhi,Liu, Hongmei,Zhou, Shumei,Wen, Fujiang,Zhu, Changxiang,Jiang, Mingsong.

[5]Inheritance of resistance to rice stripe virus in rice line 'BL 1'. Ise, K,Ishikawa, K,Li, CY,Ye, CR. 2002

[6]Overexpression of OsCIPK30 Enhances Plant Tolerance to Rice stripe virus. Liu, Zhiyang,Li, Xuejuan,Sun, Feng,Zhou, Tong,Zhou, Yijun,Liu, Zhiyang,Li, Xuejuan,Sun, Feng,Zhou, Tong,Zhou, Yijun. 2017

[7]Rice Stripe Virus Interferes with S-acylation of Remorin and Induces Its Autophagic Degradation to Facilitate Virus Infection. Xu, Yi,Li, Chenyang,Wu, Jianxiang,Zhou, Xueping,Li, Chenyang,Zhou, Xueping,Li, Yi,Xu, Yi. 2018

[8]Characterization and subcellular localization of an RNA silencing suppressor encoded by Rice stripe tenuivirus. Xiong, Ruyi,Wu, Jianxiang,Zhou, Xueping,Zhou, Yijun. 2009

[9]RNA interference of E75 nuclear receptor gene suppresses transmission of rice stripe virus in Laodelphax striatellus. Fang, Ying,Lee, Seok Hee,Kim, Jong Hoon,Park, Dong Hwan,Park, Min Gu,Woo, Ra Mi,Lee, Bo Ram,Kim, Woo Jin,Je, Yeon Ho,Choi, Jae Young,Je, Yeon Ho,Li, Shuo. 2017

[10]Over-expression of Oryza sativa Xrn4 confers plant resistance to virus infection. Jiang, Shanshan,Jiang, Liangliang,Jiang, Shanshan,Yang, Jian,Peng, Jiejun,Lu, Yuwen,Zheng, Hongying,Lin, Lin,Chen, Jianping,Yan, Fei,Yang, Jian,Peng, Jiejun,Lu, Yuwen,Zheng, Hongying,Lin, Lin,Chen, Jianping,Yan, Fei. 2018

[11]Arabidopsis is Susceptible to Rice stripe virus Infections. Sun, Feng,Yuan, Xia,Zhou, Tong,Fan, Yongjian,Zhou, Yijun,Yuan, Xia. 2011

[12]RNA-seq-based digital gene expression analysis reveals modification of host defense responses by rice stripe virus during disease symptom development in Arabidopsis. Sun, Feng,Fang, Peng,Li, Juan,Du, Linlin,Lan, Ying,Zhou, Tong,Fan, Yongjian,Zhou, Yijun,Fang, Peng,Shen, Wenbiao. 2016

[13]Altered accumulation of osa-miR171b contributes to rice stripe virus infection by regulating disease symptoms. Tong, Aizi,Yuan, Quan,Wang, Shu,Peng, Jiejun,Lu, Yuwen,Zheng, Hongying,Lin, Lin,Chen, Jianping,Yan, Fei,Tong, Aizi,Chen, Hairu,Yuan, Quan,Gong, Yifu,Wang, Shu. 2017

[14]Investigation on subcellular localization of Rice stripe virus in its vector small brown planthopper by electron microscopy. Deng, Jinhua,Li, Shuo,Ji, Yinghua,Zhou, Yijun,Deng, Jinhua,Hong, Jian. 2013

[15]Heat shock protein 70 is necessary for Rice stripe virus infection in plants. Jiang, Shanshan,Li, Kunfeng,Lin, Lin,Zheng, Hongying,Chen, Jianping,Jiang, Shanshan,Lu, Yuwen,Li, Kunfeng,Yan, Fei,Chen, Jianping.

[16]Expression of defense genes and activities of antioxidant enzymes in rice resistance to rice stripe virus and small brown planthopper. Hao, Zhongna,Wang, Lianping,He, Yueping,Liang, Jiangen,Tao, Rongxiang.

[17]The Cap Snatching of Segmented Negative Sense RNA Viruses as a Tool to Map the Transcription Start Sites of Heterologous Co-infecting Viruses. Lin, Wenzhong,Qiu, Ping,Jin, Jing,Liu, Shunmin,Ul Islam, Saif,Zhang, Jie,Du, Zhenguo,Wu, Zujian,Yang, Jinguang,Kormelink, Richard,Du, Zhenguo,Wu, Zujian. 2017

[18]Detection and fine mapping of two quantitative trait loci for partial resistance to stripe virus in rice (Oryza sativa L.). Zhang, Ying-Xin,Wang, Qi,Jiang, Ling,Wang, Bao-Xiang,Liu, Ling-Long,Shen, Ying-Yue,Cheng, Xia-Nian,Wan, Jian-Min,Wan, Jian-Min.

[19]Bacterial microbiota in small brown planthopper populations with different rice viruses. Li, Shuo,Zhou, Changwei,Chen, Guangyi,Zhou, Yijun. 2017

[20]Analysis of rice stripe virus whole-gene expression in rice and in the small brown planthopper by real-time quantitative PCR. Li, S.,Li, X.,Sun, L.,Zhou, Y.,Li, S.,Sun, L.. 2012

作者其他论文 更多>>