De Novo Characterization of Leaf Transcriptome Using 454 Sequencing and Development of EST-SSR Markers in Tea (Camellia sinensis)

文献类型: 外文期刊

第一作者: Wu, Hualing

作者: Wu, Hualing;Chen, Dong;Li, Jiaxian;Qiao, Xiaoyan;Huang, Hualin;He, Yumei;Wu, Hualing;Chen, Dong;Li, Jiaxian;Qiao, Xiaoyan;Huang, Hualin;He, Yumei;Yu, Bo

作者机构:

关键词: Leaf;Tea;Transcriptome;454 GS FLX sequencing;EST-SSR

期刊名称:PLANT MOLECULAR BIOLOGY REPORTER ( 影响因子:1.595; 五年影响因子:2.042 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Although tea leaves are rich in secondary metabolites, not enough transcriptomic information is available to aid understanding of the molecular mechanisms underlying plant growth, development, and secondary metabolite production. In this study, a total of 437,908 reads were generated from the tea leaf transcriptome using 454 sequencing. De novo assembly yielded 25,637 unigenes, 22,872 of which were annotated by BLAST searches against public databases. Most of these unigenes mapped to carbohydrate metabolism, energy metabolism and secondary metabolite biosynthetic pathways. Some abundant transcripts related to photomorphogenesis and development in plants, including ubiquitin/26S proteasome, lipid transfer protein, PPR-containing protein, small GTPase, expansin, transport inhibitor response 1 and thioredoxin, were identified in the transcriptome. Most of the genes encoding the main enzymes involved in flavonoid, caffeine and theanine biosynthesis were also found, and six MYB and two bHLH genes known to regulate flavonoid synthesis were identified. ABC transporter and glutathione S-transferase, generally responsible for secondary metabolite transport, and CYP450, broadly involved in oxidation steps in secondary metabolism, were also present in a large number of unigenes. Additionally, 3,767 EST-SSRs were identified as potential molecular markers in our unigenes. A total of 100 PCR primer pairs used in initial screening tests among 20 tea genotypes successfully identified 36 polymorphic loci. Overall, the tea leaf transcriptome sequences generated in this study reveal novel gene expression profiles and offer important clues for further study of the molecular mechanism of tea leaf growth, development and secondary metabolite synthesis. The thousands of EST-SSR markers identified will facilitate marker-assisted selection in tea breeding.

分类号: Q94

  • 相关文献

[1]Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress. Liu, Chunqing,Zhang, Ka,An, Hong,Hu, Kaining,Wen, Jing,Shen, Jinxiong,Ma, Chaozhi,Yi, Bin,Tu, Jinxing,Fu, Tingdong,Zhang, Xuekun. 2015

[2]Transcriptome profiling of litchi leaves in response to low temperature reveals candidate regulatory genes and key metabolic events during floral induction. Zhang, Hongna,Shen, Jiyuan,Chen, Houbin,Zhang, Hongna,Wei, Yongzan. 2017

[3]De novo assembly of the desert tree Haloxylon ammodendron (C. A. Mey.) based on RNA-Seq data provides insight into drought response, gene discovery and marker identification. Long, Yan,Zhang, Jingwen,Tian, Xinjie,Wu, Shanshan,Pei, Xin Wu,Zhang, Qiong,Zhang, Jianping,Dang, Zhanhai. 2014

[4]De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg.). Li, Dejun,Deng, Zhi,Qin, Bi,Liu, Xianghong,Men, Zhonghua. 2012

[5]Transcriptome analysis between invasive Pomacea canaliculata and indigenous Cipangopaludina cahayensis reveals genomic divergence and diagnostic microsatellite/SSR markers. Mu, Xidong,Song, Hongmei,Luo, Du,Gu, Dangen,Xu, Meng,Luo, Jianren,Hu, Yinchan,Hou, Guangyuan,Xu, Peng,Zhang, Jiaen. 2015

[6]Characterization of the global transcriptome using Illumina sequencing and novel microsatellite marker information in seashore paspalum. Jia, Xinping,Deng, Yanming,Sun, Xiaobo,Liang, Lijian,Ye, Xiaoqing.

[7]Transcriptome analysis reveals self-incompatibility in the tea plant (Camellia sinensis) might be under gametophytic control. Zhang, Cheng-Cai,Wang, Li-Yuan,Wei, Kang,Wu, Li-Yun,Li, Hai-Lin,Zhang, Fen,Cheng, Hao,Zhang, Cheng-Cai,Ni, De-Jiang. 2016

[8]Identification of salinity-related genes in ENO2 mutant (eno2(-)) of Arabidopsis thaliana. Zhang Yong-hua,Shi Zi-han,Cheng Hui-mei,Bing Jie,Ma Xiao-feng,Zheng Chao-xing,Zhang Gen-fa,Chen Chao,Li Hong-jie. 2018

[9]Label-free quantitative proteomics analysis of cotton leaf response to nitric oxide. Yanyan Meng,Feng Liu,Chaoyou Pang,Shuli Fan,Meizhen Song,Dan Wang,Weihua Li,Shuxun Yu.

[10]Volatile constituents of the leaves and flowers of Salvia przewalskii Maxim. from Tibet. Liu, JM,Nan, P,Tsering, Q,Tsering, T,Bai, ZK,Wang, L,Liu, ZJ,Zhong, Y. 2006

[11]RESEARCH VERTICAL DISTRIBUTION OF CHLOROPHYLL CONTENT OF WHEAT LEAVES USING IMAGING HYPERSPECTRA. Zhang, Dongyan,Wang, Xiu,Ma, Wei,Zhao, Chunjiang,Zhang, Dongyan. 2012

[12]Effects of root restriction on the ultrastructure of phloem in grape leaves. Xie, ZhaoSen,Wang, Bo,Xu, WenPing,Wang, ShiPing,Xie, ZhaoSen,Cao, Hongmei,Li, Bo,Forney, Charles F.. 2011

[13]Allelopathic effects of allelochemicals of Ginkgo biloba leaf on fusarium wilt (Fusarium oxysporum) of hot pepper. Hou, Y. X.,Song, X. Y.,Yin, Y. L.,Li, Y. S.,Yang, J. S.,Zheng, J. Y.,Yin, Y. L.. 2016

[14]HYPERSPECTRAL IMAGE FOR DISCRIMINATING APHID AND APHID DAMAGE REGION OF WINTER WHEAT LEAF. Luo Juhua,Huang Wenjiang,Guan Qingsong,Zhao Jinling,Zhang Jingcheng. 2013

[15]Monitoring Leaf Chlorophyll Fluorescence with Spectral Reflectance in Rice (Oryza sativa L.). Zhang, Hao,Zhu, Lian-feng,Jin, Qian-yu,Zhang, Hao,Hu, Hao,Zheng, Ke-feng. 2011

[16]Identification of differentially expressed genes in sunflower (Helianthus annuus) leaves and roots under drought stress by RNA sequencing. Liang, Chunbo,Huang, Xutang,Liang, Chunbo,Wang, Wenjun,Wang, Jing,Ma, Jun,Li, Cen,Zhou, Fei,Zhang, Shuquan,Yu, Ying,Zhang, Liguo,Huang, Xutang,Li, Weizhong. 2017

[17]Quantitative trait locus analysis of drought tolerance and yield in maize in China. Xiao, YN,Li, XH,George, ML,Li, MS,Zhang, SH,Zheng, YL.

[18]Genomic organization and expression analysis of a farnesyl diphosphate synthase gene (FPPS2) in apples (Malus domestica Borkh.). Yuan, Kejun,Wang, Changjun,Xin, Li,Zhang, Anning,Ai, Chengxiang.

[19]Morphological Diversity in Native Apricot Germplasm Resources of China and Grading Standards for the Foliar and Fruit Traits. Sun Haoyuan,Zhang Junhuan,Wang Yuzhu,Jiang Fengchao. 2011

[20]Overexpression of ACL1 (abaxially curled leaf 1) Increased Bulliform Cells and Induced Abaxial Curling of Leaf Blades in Rice. Li, Ling,Shi, Zhen-Ying,Li, Lin,An, Lin-Sheng,Zhang, Jing-Liu,Li, Ling,Shen, Ge-Zhi,Wang, Xin-Qi. 2010

作者其他论文 更多>>