Feeding by Whiteflies Suppresses Downstream Jasmonic Acid Signaling by Eliciting Salicylic Acid Signaling

文献类型: 外文期刊

第一作者: Zhang, Peng-Jun

作者: Zhang, Peng-Jun;Li, Wei-Di;Huang, Fang;Zhang, Jin-Ming;Lu, Yao-Bin;Xu, Fang-Cheng;Xu, Fang-Cheng

作者机构:

关键词: Bemisia tabaci;Jasmonic acid;Salicylic acid;Cross-talk;Vegetative storage protein1 (VSP1)

期刊名称:JOURNAL OF CHEMICAL ECOLOGY ( 影响因子:2.626; 五年影响因子:2.984 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Phloem-feeding whiteflies in the species complex Bemisia tabaci cause extensive crop damage worldwide. One of the reasons for their "success" is their ability to suppress the effectual jasmonic acid (JA) defenses of the host plant. However, little is understood about the mechanisms underlying whitefly suppression of JA-regulated defenses. Here, we showed that the expression of salicylic acid (SA)-responsive genes (EDS1 and PR1) in Arabidopsis thaliana was significantly enhanced during feeding by whitefly nymphs. Whereas upstream JA-responsive genes (LOX2 and OPR3) also were induced, the downstream JA-responsive gene (VSP1) was repressed, i.e., whiteflies only suppressed downstream JA signaling. Gene-expression analyses with various Arabidopsis mutants, including NahG, npr-1, ein2-1, and dde2-2, revealed that SA signaling plays a key role in the suppression of downstream JA defenses by whitefly feeding. Assays confirmed that SA activation enhanced whitefly performance by suppressing downstream JA defenses.

分类号: Q14

  • 相关文献

[1]Elevated O-3 and TYLCV Infection Reduce the Suitability of Tomato as a Host for the Whitefly Bemisia tabaci. Cui, Hongying,Zhang, Youjun,Cui, Hongying,Sun, Yucheng,Ge, Feng,Chen, Fajun. 2016

[2]Pre-infestation of Tomato Plants by Aphids Modulates Transmission-Acquisition Relationship among Whiteflies, Tomato Yellow Leaf Curl Virus (TYLCV) and Plants. Ge, Feng,Tan, Xiao L.,Chen, Ju L.,Tan, Xiao L.,Liu, Tong X.,Tan, Xiao L.,Liu, Tong X.,Benelli, Giovanni,Desneux, Nicolas,Yang, Xue Q.. 2017

[3]Three-Way Interactions Between the Tomato Plant, Tomato Yellow Leaf Curl Virus, and Bemisia tabaci (Hemiptera: Aleyrodidae) Facilitate Virus Spread. Shi, Xiaobin,Pan, Huipeng,Xie, Wen,Fang, Yong,Chen, Gong,Yang, Xin,Wu, Qingjun,Wang, Shaoli,Zhang, Youjun,Jiao, Xiaoguo.

[4]A broad-spectrum, efficient and nontransgenic approach to control plant viruses by application of salicylic acid and jasmonic acid. Cao, Sen,Zhao, Ping-Ping,Jia, Shu-Dan,Zhang, Zhong-Wei,Yuan, Shu,Shang, Jing,Xu, Fei,Wang, Shao-Dong,Xu, Mo-Yun,Wang, Jian-Hui,Lin, Hong-Hui,Wang, Jian-Hui.

[5]Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2. Zhang, Shuai,Li, Xin,Sun, Zenghui,Shao, Shujun,Zhou, Yanhong,Xia, Xiaojian,Yu, Jingquan,Shi, Kai,Li, Xin,Yu, Jingquan,Hu, Lingfei,Ye, Meng.

[6]Aphid performance changes with plant defense mediated by Cucumber mosaic virus titer. Gao, Yang,Yan, Shuo,Tang, Xin,Zhang, Deyong,Liu, Yong,Zhang, Deyong,Liu, Yong,Zhou, Xuguo. 2016

[7]The whitefly-associated facultative symbiont Hamiltonella defensa suppresses induced plant defences in tomato. Su, Qi,Xie, Wen,Wu, Qingjun,Wang, Shaoli,Zhang, Youjun,Su, Qi,Oliver, Kerry M..

[8]Drought-Tolerant Brassica rapa Shows Rapid Expression of Gene Networks for General Stress Responses and Programmed Cell Death Under Simulated Drought Stress. Chen, Sheng,Turner, Neil C.,Nelson, Matthew N.,Cowling, Wallace A.,Guo, Yi Ming,Chen, Sheng,Turner, Neil C.,Nelson, Matthew N.,Cowling, Wallace A.,Guo, Yi Ming,Samans, Birgit,Kibret, Kidist B.,Hatzig, Sarah,Snowdon, Rod J.,Turner, Neil C.,Nelson, Matthew N..

[9]Phloem-feeding whiteflies can fool their host plants, but not their parasitoids. Zhang, Peng-Jun,Zhang, Jin-Ming,Lu, Yao-Bin,Xu, Cai-Xia,Wei, Jia-Ning,Liu, Yin-Quan,David, Anja,Boland, Wilhelm,Turlings, Ted C. J.. 2013

[10]The Salicylic Acid-Mediated Release of Plant Volatiles Affects the Host Choice of Bemisia tabaci. Chen, Gong,Tian, Lixia,Peng, Zhengke,Xie, Wen,Wu, Qingjun,Wang, Shaoli,Zhang, Youjun,Shi, Xiaobin,Zhou, Xuguo. 2016

[11]Cross-talk between nitric oxide and hydrogen peroxide in plant responses to abiotic stresses. Qiao, Weihua,Li, Chaonan,Fan, Liu-Min.

[12]NPR1-dependent salicylic acid signaling is not involved in elevated CO2-induced heat stress tolerance in Arabidopsis thaliana. Li, Xin,Ahammed, Golam Jalal,Li, Xin,Yu, Jingquan,Shi, Kai. 2015

[13]The role of jasmonic acid and lipoxygenase in propylene-induced chilling tolerance on banana fruit. Liao, Fen,Cui, Sufen,Zhang, Ezhen,Huang, Maokang,He, Quanguang,Hong, Keqian,Zou, Ru. 2014

[14]OPEN GLUME1: a key enzyme reducing the precursor of JA, participates in carbohydrate transport of lodicules during anthesis in rice. Li, Xiaohui,Wang, Yihua,Duan, Erchao,Zhou, Kunneng,Lin, Qiuyun,Wang, Di,Wang, Yunlong,Long, Wuhua,Zhao, Zhigang,Jiang, Ling,Wang, Chunming,Wan, Jianmin,Cheng, Zhijun,Lei, Cailin,Zhang, Xin,Guo, Xiuping,Wang, Jiulin,Wu, Chuanyin,Wan, Jianmin,Qi, Qi. 2018

[15]TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana. Lin, Ruiming,Feng, Jing,Chen, Wanquan,Qiu, Dewen,Xu, Shichang. 2015

[16]Transcriptional and post-transcriptional regulation of the jasmonate signalling pathway in response to abiotic and harvesting stress in Hevea brasiliensis. Pirrello, Julien,Leclercq, Julie,Dessailly, Florence,Rio, Maryannick,Piyatrakul, Piyanuch,Montoro, Pascal,Piyatrakul, Piyanuch,Kuswanhadi, Kuswanhadi,Tang, Chaorong. 2014

[17]Suppression of Jasmonic Acid-Mediated Defense by Viral-Inducible MicroRNA319 Facilitates Virus Infection in Rice. Zhang, Chao,Ding, Zuomei,Wu, Kangcheng,Yang, Liang,Li, Yang,Yang, Zhen,Shi, Shan,Liu, Xiaojuan,Zheng, Luping,Wei, Juan,Du, Zhenguo,Wu, Zujian,Wu, Jianguo,Zhao, Shanshan,Yang, Zhirui,Wang, Yu,Li, Yi,Wu, Jianguo,Zhang, Aihong,Miao, Hongqin. 2016

[18]Effect of Jasmonic Acid to Resistance against Fusarium in Lily. Zhang, Y. P.,Cui, G. F.,Wu, L. F.,Wang, J. H.,Tang, D. S.,Lee, I. J.. 2011

[19]Transgenic expression of a sorghum gene (SbLRR2) encoding a simple extracellular leucine-rich protein enhances resistance against necrotrophic pathogens in Arabidopsis. Zhu, Fu-Yuan,Lo, Clive,Zhu, Fu-Yuan,Zhang, Jianhua,Zhu, Fu-Yuan,Zhang, Jianhua,Li, Lei.

[20]Application of chemical elicitor (Z)-3-hexenol enhances direct and indirect plant defenses against tea geometrid Ectropis obliqua. Xin, Zhaojun,Li, Xiwang,Chen, Zongmao,Sun, Xiaoling,Xin, Zhaojun,Li, Xiwang,Chen, Zongmao,Sun, Xiaoling,Li, Jiancai.

作者其他论文 更多>>