文献类型: 外文期刊
第一作者: Liu, Taiguo
作者: Liu, Taiguo;Gao, Li
作者机构:
关键词: Synthetic wheat;Amphidiploid;Gene expression;Genetic suppression
期刊名称:EUPHYTICA ( 影响因子:1.895; 五年影响因子:2.181 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: Stripe rust and leaf rust caused by Puccinia striiformis (Ps) Westend. and P. triticina (Pt) Eriks., respectively, are important foliar diseases of wheat worldwide. Breeding resistant wheat cultivars is the preferred strategy to control these diseases. Genes for resistance when introgressed from alien species or wheats of lower ploidy are frequently diluted effectiveness in the hexaploid wheat background or are completely suppressed. The objective of this study was to examine the expression of wheat stripe rust and leaf rust resistances derived from wild emmer wheat and Aegilops tauschii when combined in synthetic hexaploid lines. Eight amphidiploid wheat lines, synthesized by crossing five tetraploid wheats (AABB), viz. Triticum carthlicum var. darginicum, T. carthlicum var. fuligioscum, T. dicoccoides var. fuligioscum, T. durum with five lines of Ae. tauschii (DD), were evaluated in the seedling stage for resistance to five pathotypes of stripe rust caused by Ps and four pathotypes of leaf rust caused by Pt. Resistance in one or both parents was frequently suppressed in synthetic hexaploid lines, indicating the presence of suppressor genes in both Ae. tauschii and T. carthlicum var. darginicum. Specific suppression of resistance genes in the parental genotypes and to pathotypes of Ps and Pt were also observed. The presence and specificity of the suppressors for rust resistance obtained in this study provides useful knowledge for developing cultivars resistant to both rusts utilizing such genetic stocks in wheat breeding programs.
分类号: S3
- 相关文献
作者其他论文 更多>>
-
Nano-Pesticides and Fertilizers: Solutions for Global Food Security
作者:Tang, Yuying;Zhu, Guikai;Rui, Yukui;Zhao, Weichen;Tan, Zhiqiang;Huang, Lili;Zhang, Peng;Gao, Li
关键词:nanotechnology; nano-fertilizers; nano-pesticides; food security; sustainable agriculture
-
N123I mutation in the ALV-J receptor-binding domain region enhances viral replication ability by increasing the binding affinity with chNHE1
作者:Yu, Mengmeng;Zhang, Yao;Zhang, Li;Wang, Suyan;Liu, Yongzhen;Xu, Zhuangzhuang;Liu, Peng;Chen, Yuntong;Guo, Ru;Meng, Lingzhai;Zhang, Tao;Fan, Wenrui;Qi, Xiaole;Gao, Li;Zhang, Yanping;Cui, Hongyu;Gao, Yulong;Gao, Yulong;Gao, Yulong
关键词:
-
OASL suppresses infectious bursal disease virus replication by targeting VP2 for degrading through the autophagy pathway
作者:Wang, Suyan;Xu, Zhuangzhuang;Liu, Yongzhen;Yu, Mengmeng;Zhang, Tao;Liu, Peng;Qi, Xiaole;Chen, Yuntong;Meng, Lingzhai;Guo, Ru;Zhang, Li;Fan, Wenrui;Gao, Li;Duan, Yulu;Zhang, Yanping;Cui, Hongyu;Gao, Yulong;Gao, Yulong;Gao, Yulong;Gao, Yulong
关键词:IBDV; OASL; VP2; degradation; autophagy
-
First Report of Crown Rot Caused by Fusarium graminearum on Wheat in Xinjiang Uygur Autonomous Region, China
作者:Yang, Meixin;Li, Guangkuo;Gao, Haifeng;Yang, Meixin;Yi, Lishu;Liu, Taiguo;Zhang, Hao
关键词:cereals and grains; field crops; fungi; Fusarium crown rot; Fusarium graminearum; pathogen detection
-
Characterization of a Small Cysteine-Rich Secreted Effector, TcSCP_9014, in Tilletia controversa
作者:Du, Zhenzhen;Weng, Han;Jia, Huanyu;Zhang, Bin;Chen, Wanquan;Liu, Taiguo;Gao, Li;Du, Zhenzhen;Weng, Han;Wu, Boming;Gao, Li
关键词:wheat dwarf bunt; Tilletia controversa; small cysteine-rich secreted proteins; virulence effectors; plant immunity
-
Dynamic Transformation of Nano-MoS2 in a Soil-Plant System Empowers Its Multifunctionality on Soybean Growth
作者:Li, Mingshu;Zhang, Peng;Li, Mingshu;Li, Yuanbo;Yi, Tianjing;Chen, Qing;Rui, Yukui;Li, Mingshu;Zhang, Peng;Guo, Zhiling;Lynch, Iseult;Zhao, Weichen;Cao, Weidong;Tian, Chang Fu;Ren, Fazheng;Gao, Li;White, Jason C.
关键词:MoS2 nanoparticles; soybean; biodistribution; biotransformation
-
Harnessing synergy: Integrating agricultural waste and nanomaterials for enhanced sustainability
作者:Tang, Yuying;Zhu, Guikai;Jiang, Yaqi;Rui, Yukui;Zhao, Weichen;Gao, Li;Zhang, Peng;Zhang, Peng
关键词:Agricultural waste; Nanomaterials; Synergy; Sustainability; Catalyst