Identification, Phylogeny, and Expression Analysis of Pto-like Genes in Pepper

文献类型: 外文期刊

第一作者: Wan, Hongjian

作者: Wan, Hongjian;Yuan, Wei;Ruan, Meiying;Ye, Qingjing;Wang, Rongqing;Li, Zhimiao;Zhou, Guozhi;Yao, Zhuping;Yang, Yuejian

作者机构:

关键词: Pto;Disease resistance gene;Phylogenetic relationship;Pepper

期刊名称:PLANT MOLECULAR BIOLOGY REPORTER ( 影响因子:1.595; 五年影响因子:2.042 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The Pto gene from the wild tomato (Solanum pimpinellifolium Mill.) encodes a serine/threonine kinase that plays an important role in bacterial speck resistance in the cultivated tomato (Solanum lycopersicum Mill.). In this paper, 10 classes of Pto-like genes are identified using degenerate polymerase chain reaction (PCR) primers and database mining in pepper. Sequences alignment reveals that many features of the gene family, such as subdomains, autophosphorylation sites, and important amino acid residues for tomato Pto, are well conserved in pepper. A phylogenetic tree of pepper Pto-like genes along with those of other plant species, including tomato Pto genes, suggests that these genes share a common evolutionary origin, and they may have evolved prior to the divergence of monocotyledonous and dicotyledonous plants. Expression analysis has revealed that nine selected Pto-like genes can be detected in at least one of the tissues grown under normal growth conditions; however, these genes are differentially expressed. In addition, some of these genes are regulated by at least one of the subjected treatments, including hormones, abiotic stress, and pathogen infection. These findings will contribute to expanding our knowledge of the roles of Pto-like genes in growth, development, and stress tolerance in pepper.

分类号: 58.845

  • 相关文献

[1]Structural and phylogenetic analysis of Pto-type disease resistance gene candidates in Hevea brasiliensis. Zhai, W.,Zhao, Y.,Zhang, L. X.,Zhai, W.,Li, X. J.. 2014

[2]Analysis of Resistance to Powdery Mildew in Wheat Based on Expressed Sequence Tags (EST) Technique. Luo, M,Kong, XY,Jiang, T,Jia, C,Zhou, RH,Jia, JZ.

[3]Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana. Yu, Jingyin,Tehrim, Sadia,Zhang, Fengqi,Tong, Chaobo,Huang, Junyan,Cheng, Xiaohui,Dong, Caihua,Zhou, Yanqiu,Hua, Wei,Liu, Shengyi,Zhou, Yanqiu,Qin, Rui. 2014

[4]Phytohormone and genome variations in Vitis amurensis resistant to downy mildew. Qu, Junjie,Lu, Jiang,Deng, Shuhan,Liu, Shaoli,Zhang, Yali,Lu, Jiang. 2017

[5]Bacterial artificial chromosome library construction of root-knot nematode resistant pepper genotype HDA149 and identification of clones linked to Me3 resistant locus. Guo Xiao,Yang Xiao-hui,Yang Yu,Ma Wei-qing,Li Guang-cun,Mao Zhen-chuan,Liu Feng,Xie Bing-yan,Li Guang-cun. 2017

[6]Genome-Wide Identification and Expression Profile of Dof Transcription Factor Gene Family in Pepper (Capsicum annuum L.). Wu, Zhiming,Bang, Guansheng,Cheng, Jiaowen,Cui, Junjie,Hu, Kailin,Xu, Xiaowan,Luo, Xirong,Chen, Xiaocui,Tang, Xiangqun,Qin, Cheng,Qin, Cheng. 2016

[7]The Ecological Cultivation Techniques of Pepper. Cao, Zhenmu,Liu, Ziji,Niu, Yu. 2013

[8]Impact of genotype, plant growth regulators and activated charcoal on embryogenesis induction in microspore culture of pepper (Capsicum annuum L.). Cheng, Yan,Ma, Rong-li,Jiao, Yan-sheng,Qiao, Ning. 2013

[9]The complete genome sequence, occurrence and host range of Tomato mottle mosaic virus Chinese isolate. Wang, Yang,Xiao, Long,Tan, Guanlin,Lan, Pingxiu,Li, Fan,Hu, John,Tan, Guanlin,Liu, Yong. 2017

[10]Effect of refrigerator positions on quality of fresh-cut pepper. Ma, Y.. 2015

[11]Transcriptome Analysis of Pepper (Capsicum annuum) Revealed a Role of 24-Epibrassinolide in Response to Chilling. Li, Jie,Yu, Jihua,Lyu, Jian,Zhang, Guobin,Feng, Zhi,Xie, Jianming,Yang, Ping,Kang, Jungen,Gan, Yantai,Gan, Yantai,Calderon-Urrea, Alejandro. 2016

[12]Genome-Wide Identification and Expression Analysis of WRKY Gene Family in Capsicum annuum L.. Diao, Wei-Ping,Wang, Shu-Bin,Liu, Jin-Bing,Pan, Bao-Gui,Guo, Guang-Jun,Wei, Ge,Diao, Wei-Ping,Snyder, John C.. 2016

[13]Identification of reference genes for reverse transcription quantitative real-time PCR normalization in pepper (Capsicum annuum L.). Wan, Hongjian,Yuan, Wei,Ruan, Meiying,Ye, Qingjing,Wang, Rongqing,Li, Zhimiao,Zhou, Guozhi,Yao, Zhuping,Zhao, Jing,Liu, Shujun,Yang, Yuejian. 2011

[14]A SCAR marker linked to the N gene for resistance to root knot nematodes (Meloidogyne spp.) in pepper (Capsicum annuum L.). Wang, L. H.,Gu, X. H.,Hua, M. Y.,Mao, S. L.,Zhang, Z. H.,Zhang, B. X.,Gu, X. H.,Hua, M. Y.,Yun, X. F.,Peng, D. L..

[15]Bacterial expression of a Trichosanthes kirilowii defensin (TDEF1) and its antifungal activity on Fusarium oxysporum. Jian Gui-Liang,Zhang Ying-Tao,Ai Tie-Min.

[16]Residue and Degradation of Cyantraniliprole and Its Main Metabolite in Pepper and Soil. He Hong-Mei,Zhang Chun-Rong,Zhu Ya-Hong,Zhang Chang-Peng,Ping Li-Feng,Zhao Hua,Wu Min,Tang Tao,Cai Xiao-Ming,Li Zhen. 2014

[17]Establishment of a highly efficient transformation system for pepper (Capsicum annuum L.). Li, D,Zhao, K,Xie, B,Zhang, B,Luo, K. 2003

[18]Identification of Optimal Reference Genes for Normalization of qPCR Analysis during Pepper Fruit Development. Cheng, Yuan,Wan, Hongjian,Yu, Jiahong,Yao, Zhuping,Ruan, Meiying,Ye, Qingjing,Li, Zhimiao,Wang, Rongqing,Yang, Yuejian,Zhou, Guozhi,Pang, Xin,Ahammed, Golam J.. 2017

[19]Responses of pepper to waterlogging stress. Dai, X. Z.,Zhang, Z. Q.,Zou, X. X.,Ou, L. J.,Ou, L. J.. 2011

[20]Proteomic analysis of chromoplasts from six crop species reveals insights into chromoplast function and development. Wang, Yong-Qiang,Yuan, Hui,Mazourek, Michael,Li, Li,Yang, Yong,Fei, Zhangjun,Fish, Tara,Thannhauser, Theodore W.,Kochian, Leon V.,Li, Li,Fei, Zhangjun,Wang, Xiaowu. 2013

作者其他论文 更多>>