Expression of antimicrobial peptides thanatin(S) in transgenic Arabidopsis enhanced resistance to phytopathogenic fungi and bacteria

文献类型: 外文期刊

第一作者: Wu, Tingquan

作者: Wu, Tingquan;Huang, Hexun;Wang, Rui;Wu, Tingquan;Tang, Dingzhong;Chen, Weida;Chen, Yongfang

作者机构:

关键词: Antimicrobial peptide;Phytopathogenic fungi and bacteria;Thanatin(S)

期刊名称:GENE ( 影响因子:3.688; 五年影响因子:3.329 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Thanatin(S) is an analog of thanatin, an insect antimicrobial peptide possessing strong and broad spectrum of antimicrobial activity. In order to investigate if the thanatin could be used in engineering transgenic plants for increased resistance against phytopathogens, the synthetic thanatin(S) was introduced into Arabidopsis thaliana plants. To increase the expression level of thanatin(S) in plants, the coding sequence was optimized by plant-preference codon. To avoid cellular protease degradation, signal peptide of rice Cht1 was fused to N terminal of thanatin(S) for secreting the expressed thanatin(S) into intercellular spaces. To evaluate the application value of thanatin(S) in plant disease control, the synthesized coding sequence of Cht1 signal peptide (Cht1SP)-thanatin(S) was ligated to plant gateway destination binary vectors pGWB11 (with FLAG tag). Meanwhile, in order to observe the subcellular localization of Cht1SP-thanatin(S)-GFP and thanatin(S)-GFP, the sequences of Cht1SP-thanatin(S) and thanatin(S) were respectively linked to pGWB5 (with GFP tag). The constructs were transformed into Arabidopsis ecotype Col-0 and mutant pad4-1 via Agrobacterium-mediated transformation. The transformants with Cht1SP-thanatin(S)-FLAG fusion gene were analyzed by genomic PCR, real-time PCR, and western blots and the transgenic Arabidopsis plants introduced respectively Cht1SP-thanatin(S)-GFP and thanatin(S)-GFP were observed by confocal microscopy. Transgenic plants expressing Cht1SP-thanatin(S)-FLAG fusion protein showed antifungal activity against Botrytis cinerea and powdery mildew, as well as antibacterial activity against Pseudomonas syringae pv. tomato. And the results from confocal observation showed that the GFP signal from Cht1SP-thanatin(S)-GFP transgenic Arabidopsis plants occurred mainly in intercellular space, while that from thanatin(S)-GFP transgenic plants was mainly detected in the cytoplasm and that from empty vector transgenic plants was distributed uniformly throughout the cell, demonstrating that Cht1 signal peptide functioned. In addition, thanatin(S) and thanatin(S)-FLAG chemically synthesized have both in vitro antimicrobial activities against P. syringae pv. tomato and B. cinerea. So, thanatin(S) is an ideal candidate AMPs for the construction of transgenic crops endowed with a broad-spectrum resistance to phytopathogens and the strategy is feasible to link a signal peptide to the target gene.

分类号: R394

  • 相关文献

[1]Transgenic rice expressing a novel phytase-lactoferricin fusion gene to improve phosphorus availability and antibacterial activity. Deng Li-hua,Weng Lu-shui,Deng Xiang-yang,Xiao Guo-ying,Wang Zuo-ping,Fu Xi-qin,Xin Ye-yun. 2017

[2]The in vitro, in vivo antifungal activity and the action mode of Jelleine-I against Candida species. Jia, Fengjing,Wang, Jiayi,Peng, Jinxiu,Zhao, Ping,Wang, Kairong,Yan, Wenjin,Wang, Rui,Kong, Ziqing. 2018

[3]Identification of a cysteine-rich antimicrobial peptide from salivary glands of the tick Rhipicephalus haemaphysaloides. Zhang, Houshuang,Zhang, Wenjie,Wang, Xinzhi,Zhou, Yongzhi,Wang, Na,Zhou, Jinlin. 2011

[4]Design and pharmacodynamics of recombinant NZ2114 histidine mutants with improved activity against methicillin-resistant Staphylococcus aureus. Chen, Huixian,Feng, Xingjun,Chen, Huixian,Mao, Ruoyu,Teng, Da,Wang, Xiumin,Hao, Ya,Wang, Jianhua,Chen, Huixian,Mao, Ruoyu,Teng, Da,Wang, Xiumin,Hao, Ya,Wang, Jianhua. 2017

[5]Purification of antimicrobial peptide from Antarctic Krill (Euphausia superba) and its function mechanism. Zhao Ling,Yin Bangzhong,Liu Qi,Cao Rong. 2013

[6]Functional analysis of a novel cysteine-rich antimicrobial peptide from the salivary glands of the tick Rhipicephalus haemaphysaloides. Zhang, Houshuang,Yang, Siqi,Gong, Haiyan,Cao, Jie,Zhou, Yongzhi,Zhou, Jinlin,Zhou, Jinlin,Yang, Siqi.

[7]Purification and characterization of a novel antimicrobial peptide from Brevibacillus laterosporus strain A60. Guo, Lihua,Zeng, Hongmei,Yang, Xiufen,Yuan, Jingjing,Shi, Huaixing,Xiong, Yehui,Chen, Mingjia,Han, Lei,Qiu, Dewen.

[8]Design and recombination expression of a novel plectasin-derived peptide MP1106 and its properties against Staphylococcus aureus. Cao, Xintao,Zhang, Yong,Mao, Ruoyu,Teng, Da,Wang, Xiumin,Wang, Jianhua,Cao, Xintao,Zhang, Yong,Mao, Ruoyu,Teng, Da,Wang, Xiumin,Wang, Jianhua.

[9]Higher efficiency soluble prokaryotic expression, purification, and structural analysis of antimicrobial peptide G13. Che, Yuanyuan,Lu, Yinghu,Zha, Xiangdong,Ma, Lijuan,Xu, Xuejiao,Huang, Huoqing,Yang, Peilong.

[10]Multimerization and fusion expression of bovine lactoferricin derivative LfcinB15-W4,10 in Escherichia coli. Tian, Zi-gang,Da Teng,Yang, Ya-lin,Luo, Jin,Feng, Xing-jun,Fan, Ying,Zhang, Fan,Wang, Jian-hua.

[11]Two novel antimicrobial peptides purified from the symbiotic bacteria Xenorhabdus budapestensis NMC-10. Xiao, Yao,Meng, Fanlu,Qiu, Dewen,Yang, Xiufen.

[12]TC38, a teleost TFPI-2 peptide that kills bacteria via penetration of the cell membrane and interaction with nucleic acids. Zhang, Min,Yue, Bin,Wang, Guang-hua,Liu, Yong,Zhou, Shun,Cheng, Shun-feng,Li, Ning-qiu,Zhang, Ai-hua.

[13]D-amino acid substitution enhances the stability of antimicrobial peptide polybia-CP. Jia, Fengjing,Wang, Jiayi,Peng, Jinxiu,Zhao, Ping,Wang, Kairong,Yan, Wenjin,Wang, Rui,Kong, Ziqing. 2017

[14]Modification and characterization of a new recombinant marine antimicrobial peptide N2. Yang, Na,Feng, Xingjun,Wang, Xiumin,Teng, Da,Mao, Ruoyu,Hao, Ya,Zong, Lifen,Wang, Jianhua,Yang, Na,Wang, Xiumin,Teng, Da,Mao, Ruoyu,Hao, Ya,Zong, Lifen,Wang, Jianhua. 2016

[15]Improved antibacterial activity of a marine peptide-N2 against intracellular Salmonella typhimurium by conjugating with cell-penetrating peptides-bLFcin(6)/Tat(11). Li, Zhanzhan,Wang, Xiao,Teng, Da,Mao, Ruoyu,Hao, Ya,Yang, Na,Chen, Huixian,Wang, Xiumin,Wang, Jianhua,Li, Zhanzhan,Wang, Xiao,Teng, Da,Mao, Ruoyu,Hao, Ya,Yang, Na,Chen, Huixian,Wang, Xiumin,Wang, Jianhua. 2018

[16]High-level secretory expression of metchnikowin in Escherichia coli. Wu, Di,Lu, Yinghu,Ma, Lijuan,Che, Yuanyuan,Zha, Xiangdong,Yao, Bin,Huang, Huoqing,Yang, Peilong. 2013

[17]Construction of Salmonella Pullorum ghost by co-expression of lysis gene E and the antimicrobial peptide SMAP29 and evaluation of its immune efficacy in specific-pathogen-free chicks. Tian Qiu-feng,Zhou Wei,Si Wei,Yi Fei,Hua Xin,Chen Li-ping,Liu Si-guo,Yu Shen-ye,Tian Qiu-feng,Zhou Wei,Yi Fei,Yue Min. 2018

[18]GAP-initiated constitutive expression of a novel plectasin-derived peptide MP1106 by Pichia pastoris and its activity against Streptococcus suis. Jiao, Jian,Feng, Xingjun,Jiao, Jian,Mao, Ruoyu,Wang, Xiumin,Zhang, Yong,Teng, Da,Wang, Jianhua,Jiao, Jian,Mao, Ruoyu,Wang, Xiumin,Zhang, Yong,Teng, Da,Wang, Jianhua. 2015

[19]Recombinant production of the antimicrobial peptide NZ17074 in Pichia pastoris using SUMO3 as a fusion partner. Wang, X. J.,Wang, X. M.,Teng, D.,Zhang, Y.,Mao, R. Y.,Wang, J. H.,Wang, X. J.,Wang, X. M.,Teng, D.,Zhang, Y.,Mao, R. Y.,Wang, J. H..

[20]Expression of antimicrobial peptide LH multimers in Escherichia coli C43(DE3). Tian, Zi-gang,Dong, Tian-tang,Yang, Ya-lin,Teng, Da,Wang, Jian-hua.

作者其他论文 更多>>