Identification of QTLs for seed and pod traits in soybean and analysis for additive effects and epistatic effects of QTLs among multiple environments

文献类型: 外文期刊

第一作者: Yang, Zhe

作者: Yang, Zhe;Xin, Dawei;Sun, Yanan;Qi, Zhaoming;Chen, Qingshan;Yang, Zhe;Jiang, Hongwei;Han, Xue;Yang, Zhe;Liu, Chunyan;Hu, Guohua

作者机构:

关键词: Soybean;QTLs;Seed and pod traits;Multiple environments;AE interactions;AAE interactions

期刊名称:MOLECULAR GENETICS AND GENOMICS ( 影响因子:3.291; 五年影响因子:3.257 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Soybean seed and pod traits are important yield components. Selection for high yield style in seed and pod along with agronomic traits is a goal of many soybean breeders. The intention of this study was to identify quantitative trait loci (QTL) underlying seed and pod traits in soybean among eleven environments in China. 147 recombinant inbred lines were advanced through single-seed-descent method. The population was derived from a cross between Charleston (an American high yield soybean cultivar) and DongNong594 (a Chinese high yield soybean cultivar). A total of 157 polymorphic simple sequence repeat markers were used to construct a genetic linkage map. The phenotypic data of seed and pod traits [number of one-seed pod, number of two-seed pod, number of three-seed pod, number of four-seed pod, number of (two plus three)-seed pod, number of (three plus four)-seed pod, seed weight per plant, number of pod per plant] were recorded in eleven environments. In the analysis of single environment, fourteen main effect QTLs were identified. In the conjoint analysis of multiple environments, twenty-four additive QTLs were identified, and additive QTLs by environments interactions (AE) were evaluated and analyzed at the same time among eleven environments; twenty-three pairs of epistatic QTLs were identified, and epistasis (additive by additive) by environments interactions (AAE) were also analyzed and evaluated among eleven environments. Comparing the results of identification between single environment mapping and multiple environments conjoint mapping, three main effect QTLs with positive additive values and another three main effect QTLs with negative additive values, had no interactions with all environments, supported that these QTLs could be used in molecular assistant breeding in the future. These different effect QTLs could supply a good foundation to the gene clone and molecular asisstant breeding of soybean seed and pod traits.

分类号: Q7

  • 相关文献

[1]Characterization of Genetic Basis on Synergistic Interactions between Root Architecture and Biological Nitrogen Fixation in Soybean. Yang, Yongqing,Yang, Yongqing,Li, Xinxin,Ai, Wenqin,Liu, Dong,Qi, Wandong,Liao, Hong,Zhao, Qingsong,Zhang, Mengchen,Yang, Chunyan,Ai, Wenqin,Liu, Dong,Qi, Wandong. 2017

[2]Dissection of genetic overlap of drought and low-temperature tolerance QTLs at the germination stage using backcross introgression lines in soybean. Zhang, Wen Bo,Xin, Da Wei,Chen, Qing Shan,Zhang, Wen Bo,Jiang, Hong Wei,Liu, Chun Yan,Hu, Guo Hua,Zhang, Wen Bo,Qiu, Peng Cheng,Li, Can Dong,Hu, Guo Hua.

[3]Identification of stable quantitative trait loci (QTLs) for fiber quality traits across multiple environments in Gossypium hirsutum recombinant inbred line population. Muhammad Jamshed,Fei Jia,Juwu Gong,;Koffi Kibalou Palanga,Yuzhen Shi,Junwen Li,Haihong Shang,Aiying Liu,Tingting Chen,Zhen Zhang,Juan Cai,Qun Ge,Zhi Liu,Quanwei Lu,Xiaoying Deng,Yunna Tan,Harun or Rashid,Zareen Sarfraz,Murtaza Hassan,Wankui Gong,Youlu Yuan. 2016

[4]Characterizing Variation of Branch Angle and Genome-Wide Association Mapping in Rapeseed (Brassica napus L.). Liu, Jia,Wang, Wenxiang,Mei, Desheng,Wang, Hui,Fu, Li,Li, Yunchang,Hui, Qiong,Liu, Daoming. 2016

[5]Dynamic QTL and epistasis analysis on seedling root traits in upland cotton. Liang, Qingzhi,Li, Pengbo,Hu, Cheng,Hua, Hua,Li, Zhaohu,Hua, Jinping,Rong, Yihua,Wang, Kunbo.

[6]Identification of stable QTLs controlling fiber traits properties in multi-environment using recombinant inbred lines in Upland cotton (Gossypium hirsutum L.). Shang, Lianguang,Liang, Qingzhi,Wang, Xiaocui,Abduweli, Abdugheni,Ma, Lingling,Cai, Shihu,Hua, Jinping,Wang, Yumei,Wang, Kunbo.

[7]Association mapping analysis of fiber yield and quality traits in Upland cotton (Gossypium hirsutum L.). Mulugeta Seyoum Ademe,Du, Xiongming,Jia, Yinhua,Shoupu He,Zhaoe Pan,Junling Sun,Qinglian Wang,Hongde Qin,Jinhai Liu,Hui Liu,Jun Yang,Dongyong Xu,Jinlong Yang,Zhiying Ma,Jinbiao Zhang,Zhikun Li,Zhongmin Cai,Xuelin Zhang,Xin Zhang,Aifen Huang,Xianda Yi,Guanyin Zhou,Lin Li,Haiyong Zhu,Baoyin Pang,Liru Wang,Yinhua Jia,Xiongming Du.

[8]Molecular dissection of the primary sink size and its related traits in rice. Xu, JL,Yu, SB,Luo, LJ,Zhong, DB,Mei, HW,Li, ZK. 2004

[9]Fine mapping and identification of candidate genes for a QTL affecting Meloidogyne incognita reproduction in Upland cotton. Kumar, Pawan,He, Yajun,Singh, Rippy,Shen, Xinlian,Chee, Peng W.,Davis, Richard F.,Guo, Hui,Paterson, Andrew H.,Peterson, Daniel G.,Nichols, Robert L.,Shen, Xinlian,He, Yajun. 2016

[10]Quantitative trait loci for leaf chlorophyll fluorescence traits in wheat. Zhang, Zheng-Bin,Xu, Ping,Jia, Ji-Zeng,Zhou, Rong-Hua. 2010

[11]Joint-linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize. Wu, Xun,Li, Yongxiang,Shi, Yunsu,Song, Yanchun,Zhang, Dengfeng,Li, Chunhui,Li, Yu,Wang, Tianyu,Buckler, Edward S.,Buckler, Edward S.,Zhang, Zhiwu,Wu, Xun,Zhang, Zhiwu.

[12]Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.). Li, ZK,Fu, BY,Gao, YM,Xu, JL,Ali, J,Lafitte, HR,Jiang, YZ,Rey, JD,Vijayakumar, CHM,Maghirang, R,Zheng, TQ,Zhu, LH.

[13]Identification of quantitative trait loci associated with soybean seed protein content using two populations derived from crosses between Glycine max and Glycine soja. Yan, Long,Xing, Li-Li,Chang, Ru-Zhen,Qiu, Li-Juan,Yan, Long,Yang, Chun-Yan,Zhang, Meng-Chen.

[14]Genome-wide assessment of population structure, linkage disequilibrium and resistant QTLs in Chinese wild grapevine. Zhang, Ying,Fan, Xiucai,Jiang, Jianfu,Sun, Haisheng,Liu, Chonghuai,Feng, Li,Zheng, Xian-bo.

[15]Quantitative trait loci for the number of vertebrae on Sus scrofa chromosomes 1 and 7 independently influence the numbers of thoracic and lumbar vertebrae in pigs. Zhang Long-chao,Liu Xin,Liang Jing,Yan Hua,Zhao Ke-bin,Li Na,Pu Lei,Shi Hui-bi,Zhang Yue-bo,Wang Li-gang,Wang Li-xian. 2015

[16]High-density genetic map construction and QTLs analysis of grain yield-related traits in Sesame (Sesamum indicum L.) based on RAD-Seq techonology. Wu, Kun,Liu, Hongyan,Yang, Minmin,Wu, Wenxiong,Zuo, Yang,Zhao, Yingzhong,Tao, Ye,Ma, Huihui. 2014

[17]Fine Mapping Identifies a New QTL for Brown Rice Rate in Rice (Oryza Sativa L.). Ren, Deyong,Rao, Yuchun,Huang, Lichao,Leng, Yujia,Hu, Jiang,Zhang, Guangheng,Zhu, Li,Gao, Zhenyu,Dong, Guojun,Guo, Longbiao,Qian, Qian,Zeng, Dali,Rao, Yuchun,Lu, Mei. 2016

[18]Molecular mapping of quantitative trait loci for zinc toxicity tolerance in rice seedling (Oryza sativa L.). Dong, YJ,Ogawa, T,Lin, DZ,Koh, HJ,Kamiunten, H,Matsuo, M,Cheng, SH. 2006

[19]Detection of QTLs controlling fast kernel dehydration in maize (Zea mays L.). Qian, Y. L.,Guo, J.,Wang, J.,Qi, Y. C.,Li, T. C.,Zhang, W.,Ruan, L.,Zuo, X. L.,Zhang, X. Q.,Wang, L. F.,Chen, J.,Chen, B. R.,Lv, G. H.,Wu, Z. C.. 2016

[20]Breeding of a target genotype variety based on identified chalkiness marker-QTL associations in rice (Oryza sativa L.). Liu, X.,Du, Y. R.,Li, X. H.,Yang, W. Q.,Liu, X.,Wang, Y.,Liu, X.,Li, X. L.. 2015

作者其他论文 更多>>