Modeling impacts of film mulching on rainfed crop yield in Northern China with DNDC

文献类型: 外文期刊

第一作者: Han, Juan

作者: Han, Juan;Jia, Zhikuan;Wu, Wei;Han, Qingfang;Han, Juan;Jia, Zhikuan;Wu, Wei;Han, Qingfang;Li, Changsheng;Zhang, Jie

作者机构:

关键词: Rainfed agriculture;Film mulch;Soil moisture;Crop yield;DNDC

期刊名称:FIELD CROPS RESEARCH ( 影响因子:5.224; 五年影响因子:6.19 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Water stress is a major factor threatening agricultural production across a wide range of rainfed croplands in China. Drought threats would become worse along with climate change, especially in Northern China where the projected climate change scenarios indicated decreases in precipitation in the arid or semi-arid agricultural areas. Pilot experiments have been launched to search alternative farming management practices for adaptation of the climate change in China. Plastic film mulching (FM) has recently been tested at a number of sites in China with encouraging results although no any regional assessment has been done yet: This paper reports how we met the gap by testing a process-based, biogeochemical model, Denitrification-Decomposition or DNDC, against observations and then utilizing the model to upscale the simulations to a large region in China. DNDC was first modified by including a new module, which tracked variations of soil climate under the film mulching conditions. Two new input parameters, i.e., FM-covering fraction and duration, worked in conjunction with daily weather data to define the daily soil temperature and moisture profiles. By varying the FM coverage or duration, we could simulate a variety of FM settings and their impacts on the soil climate. A 3-year dataset of soil climate as well as crop yield measured at a rainfed corn field in Shaanxi Province in Northwestern China were used to serve the model validation tests. The measured and modeled results were in agreement with each other and both indicated that the FM practice substantially improved the soil moisture as well as the crop yield. Sensitivity tests were conducted with the revised DNDC by varying each of four factors, i.e., precipitation, temperature, soil texture and fertilizer application rate, in its range commonly observed in Northern China while keeping other input factors constant. Results from the sensitivity tests indicated that the effectiveness of FM was mainly related to precipitation. Efficiency of FM increased with decrease of precipitation. The FM effectiveness was evaluated at regional scale by linking DNDC to the databases holding spatially differentiated climate, soil and management data for all the 1.17 million ha of rainfed corn fields in the entire province of Shaanxi, across which the annual average precipitation decreased from 940 mm in the south to 390 mm in the north. Results from the regional simulation indicated that (1) corn production increased by 1.79 million tons or 16% with FM applications in the domain of Shaanxi; (2) the FM-induced increases in corn yield mainly occurred in the northern counties of the province where precipitation was lower than 700 mm; and (3) the effectiveness of FM decreased with increase in precipitation from the northern to the southern areas in the domain. The study concluded that film mulching practice could play an important role in elevating rainfed crop yields in the arid or semi-arid regions in China

分类号: S

  • 相关文献

[1]EFFECTS OF TILLAGE IN FALLOW PERIOD AND SOWING METHODS ON WATER STORAGE AND GRAIN PROTEIN ACCUMULATION OF DRYLAND WHEAT. Deng, Yan,Deng, Yan,Sun, Min,Gao, Zhiqiang,Zhao, Hongmei,Ren, Aixia,Li, Guang,Yang, Zhenping,Zong, Yuzhen.

[2]Topographic Indices and Yield Variability in a Rolling Landscape of Western Canada. Chi Bao-Liang,Bing Cheng-Si,Walley, F.,Yates, T..

[3]Effects of different management practices on the soil-water balance and crop yield for improved dryland farming in the Chinese Loess Plateau. Jin, Ke,Cornelis, Wim M.,Schiettecatte, Wouter,Lu, Junjie,Yao, Yuqing,Wu, Huijun,Gabriels, Donald,De Neve, Stefaan,Cai, Dianxiong,Jin, Jiyun,Hartmann, Roger. 2007

[4]Modeling the effects of farming management practices on soil organic carbon stock at a county-regional scale. Deng, Nanrong,Wang, Qi,Wang, Jing,Lv, Changhe,Yu, Haibin,Li, Wangjun,Chen, Zhao. 2018

[5]The development of China-DNDC and review of its applications for sustaining Chinese agriculture. Li Hu,Wang Ligang,Li Jianzheng,Gao Maofang,Zhang Jing,Zhang Jianfeng,Qiu Jianjun,Deng Jia,Changsheng Li,Frolking, Steve,Li Hu,Wang Ligang,Li Jianzheng,Gao Maofang,Zhang Jing,Zhang Jianfeng,Qiu Jianjun,Deng Jia,Changsheng Li,Frolking, Steve.

[6]Impact of agricultural ntensification on soil organic carbon: A study using DNDC in Huantai County, Shandong Province, China. Liao Yan,Wu Wen-liang,Meng Fan-qiao,Liao Yan,Li Hu. 2016

[7]A long-term sensitivity analysis of the denitrification and decomposition model. Qin, Xiaobo,Li, Yu'e,Gao, Qingzhu,Wan, Yunfan,Liu, Shuo,Liu, Yuntong,Qin, Xiaobo,Wang, Hong,McConkey, Brian,Brandt, Kelsey,Li, Yong,Lemke, Reynald,Li, Changsheng,Xu, Chao. 2013

[8]An Agricultural Tri-dimensional Pollution Data Management Platform Based on DNDC Model. Jiang, Lihua,Wang, Wensheng,Yang, Xiaorong,Xie, Nengfu,Jiang, Lihua,Wang, Wensheng,Yang, Xiaorong,Xie, Nengfu,Cheng, Youping. 2011

[9]Estimates of N2O Emissions and Mitigation Potential from a Spring Maize Field Based on DNDC Model. Li Hu,Qiu Jian-Jun,Wang Li-gang,Xu Ming-yi,Liu Zhi-qiang,Wang Wei. 2012

[10]Simulation and Prediction of Soil Organic Carbon Spatial Change in Arable Lands Based on DNDC Model. Wang, Deying,Yao, Yanmin,Si, Haiqing,Zhang, Wenju,Tang, Huajun. 2014

[11]Identifying critical nitrogen application rate for maize yield and nitrate leaching in a Haplic Luvisol soil using the DNDC model. Zhang, Yitao,Wang, Hongyuan,Liu, Shen,Lei, Qiuliang,Zhai, Limei,Liu, Hongbin,Liu, Jian,He, Jianqiang,Ren, Tianzhi.

[12]Testing the RothC and DNDC models against long-term dynamics of soil organic carbon stock observed at cropping field soils in North China. Li, Shumin,Li, Jumei,Li, Xiuying,Ma, Yibing,Li, Changsheng,Huang, Shaomin,Li, Shengxiu,Ma, Yibing.

[13]Response of soil moisture under different crop planting to precipitation in Central Hill Region, Sichuan Basin. Liang, Chuan,Long, Xunjian,Zhang, Chunmin,Zhang, Chunmin. 2011

[14]Effects of irrigation on the performance of cotton bollworm, Helicoverpa armigera (Hubner) during different pupal stages. Yu, Fu Lan,Zhai, Bao Ping,Chen, Fa Jun,Yu, Fu Lan,Wu, Gang. 2008

[15]ESTIMATING SOIL MOISTURE IN THE AGRICULTURAL AREAS USING RADARSAT-2 QUAD-POLARIZATION SAR DATA. Ma, Jianwei,Huang, Shifeng,Li, Jiren,Li, Xiaotao,Sun, Yayong,Lei, Tianjie,Song, Xiaoning,Leng, Pei. 2016

[16]The Effect of Vegetation on the Remotely Sensed Soil Thermal Inertia and a Two-Source Normalized Soil Thermal Inertia Model for Vegetated Surfaces. Zhang, Renhua,Tian, Jing,Mi, Sujuan,Su, Hongbo,Liu, Kai,Mi, Sujuan,Liu, Kai,Su, Hongbo,He, Honglin,Li, Zhaoliang. 2016

[17]Soil Moisture Status under Deep-Rooted and Shallow-Rooted Vegetation in the Semiarid Area of Loess Plateau in China. Wang, Xuyan,Zhang, Wanjun,Liu, Xiuping,Wang, Zhiqiang,Wang, Shufen. 2014

[18]Study on the rational sampling numbers of soil moisture monitoring for cotton. Li, Yan,Lei, XiaoYun,Zheng, GuoYu. 2012

[19]Progress in soil moisture estimation from remote sensing data for agricultural drought monitoring. Yan, Feng,Qin, Zhihao,Yan, Feng,Qin, Zhihao,Li, Maosong,Li, Wenjuan. 2006

[20]Repeated water absorbency of super-absorbent polymers in agricultural field applications: a simulation study. Bai, Wenbo,Song, Jiqing,Zhang, Huanzhong,Bai, Wenbo,Song, Jiqing,Zhang, Huanzhong,Bai, Wenbo,Song, Jiqing,Zhang, Huanzhong. 2013

作者其他论文 更多>>