Fine mapping of BrWax1, a gene controlling cuticular wax biosynthesis in Chinese cabbage (Brassica rapa L. ssp pekinensis)

文献类型: 外文期刊

第一作者: Zhang, Xi

作者: Zhang, Xi;Liu, Zhiyong;Wang, Qiushi;Yang, Shuo;Feng, Hui;Wang, Ping

作者机构:

关键词: Cuticular wax;Molecular markers;SSRs;Linkage mapping;Brassica rapa

期刊名称:MOLECULAR BREEDING ( 影响因子:2.589; 五年影响因子:2.75 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The surface of plants is covered with a cuticular wax, which contains a mixture of very-long-chain fatty acid derivatives. This wax layer provides a hydrophobic barrier which reduces non-stomatal water loss and prevents pathogen attack. The biosynthesis pathway of cuticular wax in Arabidopsis is well studied; however, little is known about the synthesis of cuticular wax in Brassica rapa. Genetic analyses indicated that the waxy characteristic is controlled by a single dominant gene. In the present study, preliminary mapping results from an F2 population consisting of 308 recessive individuals showed that the BrWax1 (Brassica Wax) gene is located on linkage group A01. We developed a set of new markers closely linked to the target gene, and used another population of 1,020 recessive F2 individuals to fine-map the BrWax1 gene to a genomic DNA fragment of approximately 86.4 kb. Fifteen genes were identified in this target region. Based on gene annotation, the Bra013809 gene was the candidate for the BrWax1 gene. Quantitative real-time PCR analysis and expression pattern of the two parents showed that the expression level of Bra013809 was much higher in the waxy phenotype than in the glossy phenotype. This result should provide not only important information for functional studies of the BrWax1 gene, but also the starting point for studying the pathway of cuticular wax biosynthesis in Brassica rapa.

分类号: Q94

  • 相关文献

[1]Isolation and characterization of microsatellite loci from the mulberry, Morus L.. Zhao, WG,Mia, XX,Jia, SH,Pan, YL,Huang, Y.

[2]Mapping the BrPur gene for purple leaf color on linkage group A03 of Brassica rapa. Wang, Weihong,Zhang, Deshuang,Yu, Shuancang,Liu, Jin,Wang, Dan,Zhang, Fenglan,Yu, Yangjun,Zhao, Xiuyun,Lu, Guixiang,Su, Tongbing,Wang, Weihong,Zhang, Deshuang,Yu, Shuancang,Liu, Jin,Wang, Dan,Zhang, Fenglan,Yu, Yangjun,Zhao, Xiuyun,Lu, Guixiang,Su, Tongbing.

[3]Association mapping analysis of fiber yield and quality traits in Upland cotton (Gossypium hirsutum L.). Mulugeta Seyoum Ademe,Du, Xiongming,Jia, Yinhua,Shoupu He,Zhaoe Pan,Junling Sun,Qinglian Wang,Hongde Qin,Jinhai Liu,Hui Liu,Jun Yang,Dongyong Xu,Jinlong Yang,Zhiying Ma,Jinbiao Zhang,Zhikun Li,Zhongmin Cai,Xuelin Zhang,Xin Zhang,Aifen Huang,Xianda Yi,Guanyin Zhou,Lin Li,Haiyong Zhu,Baoyin Pang,Liru Wang,Yinhua Jia,Xiongming Du.

[4]Genome-wide association mapping of glyphosate-resistance in Gossypium hirsutum races. Wang, Yuan-Yuan,Zhou, Zhong-Li,Wang, Xing-Xing,Cai, Xiao-Yan,Li, Xiao-Na,Wang, Chun-Ying,Wang, Yu-Hong,Fang, Liu,Wang, Kun-Bo,Wang, Yuan-Yuan.

[5]Transcriptome analysis of eyestalk and hemocytes in the ridgetail white prawn Exopalaemon carinicauda: assembly, Annotation and Marker Discovery. Li, Jitao,Li, Jian,Chen, Ping,Liu, Ping,He, Yuying.

[6]Analysis of Muscle and Ovary Transcriptome of Sus scrofa: Assembly, Annotation and Marker Discovery. Nie, Qinghua,Jia, Xinzheng,Zhang, Wei,Zhou, Xiaoning,He, Xiaomei,Zhang, Xiquan,Nie, Qinghua,Jia, Xinzheng,Zhang, Wei,Zhou, Xiaoning,He, Xiaomei,Zhang, Xiquan,Fang, Meixia. 2011

[7]Generation and characterization of 24 novel EST derived microsatellites from tea plant (Camellia sinensis) and cross-species amplification in its closely related species and varieties. Zhao, Li-Ping,Liu, Zhen,Chen, Liang,Yao, Ming-Zhe,Wang, Xin-Chao.

[8]Comparative Assessment of Synthetic-derived and Conventional Bread Wheat Advanced Lines Under Osmotic Stress and Implications for Molecular Analysis. Ali, Ahmad,Sher, Hassan,Ali, Ahmad,Arshad, Muhammad,Naqvi, S. M. Saqlan,Rasheed, Awais,Rasheed, Awais,Kazi, Alvina Gul,Mujeeb-Kazi, Abdul.

[9]Genetic diversity center of cultivated soybean (Glycine max) in China - New insight and evidence for the diversity center of Chinese cultivated soybean. Wang Li-xia,Guan Rong-xia,Li Ying-hui,Liu Zhang-xiong,Chang Ru-zhen,Qiu Li-juan,Lin Fan-yun,Li Lin-hai,Luan Wei-jiang,Li Wei,Piao Ri-hua,Yan Zhe,Guan Yuan,Ning Xue-cheng,Zhu Li,Zhang Hai-yan,Zhang Yue-qiang,Ma Yan-song,Dong Zhi-min. 2016

[10]A comparison of genetic variation among wild and cultivated Morus Species (Moraceae : Morus) as revealed by ISSR and SSR markers. Zhao Weiguo,Zhou Zhihua,Miao Xuexia,Zhang Yong,Wang Sibao,Huang Jianhua,Xiang Hui,Pan Yile,Huang Yongping. 2007

[11]Composition and morphology of cuticular wax in blueberry (Vaccinium spp.) fruits. Chu, Wenjing,Gao, Haiyan,Fang, Xiangjun,Chen, Hangjun,Xiao, Shangyue,Chu, Wenjing,Gao, Haiyan,Chu, Wenjing,Cao, Shifeng. 2017

[12]OsHSD1, a hydroxysteroid dehydrogenase, is involved in cuticle formation and lipid homeostasis in rice. Zhang, Zhe,Cheng, Zhi-jun,Gan, Lu,Wu, Fu-qing,Lin, Qi-bing,Wang, Jiu-lin,Wang, Jie,Guo, Xiu-ping,Zhang, Xin,Zhao, Zhi-chao,Lei, Cai-lin,Zhu, Shan-shan,Wan, Jian-min,Zhang, Huan,Wang, Chun-ming,Wan, Jian-min.

[13]Five Fatty Acyl-Coenzyme A Reductases Are Involved in the Biosynthesis of Primary Alcohols in Aegilops tauschii Leaves. Wang, Meiling,Wu, Hongqi,Li, Chunlian,Wang, Yong,Wang, Zhonghua,Xu, Jing. 2017

[14]Wax crystal-sparse leaf2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax. Mao, Bigang,Cheng, Zhijun,Lei, Cailin,Xu, Fenghua,Gao, Suwei,Wang, Jiulin,Zhang, Xin,Wang, Jie,Wu, Fuqing,Guo, Xiuping,Liu, Xiaolu,Wu, Chuanyin,Wang, Haiyang,Wan, Jianmin,Ren, Yulong,Wan, Jianmin.

[15]Fine mapping of BoGL1, a gene controlling the glossy green trait in cabbage (Brassica oleracea L. Var. capitata). Liu, Dongming,Ye, Zhibiao,Liu, Dongming,Tang, Jun,Liu, Zezhou,Dong, Xin,Zhuang, Mu,Zhang, Yangyong,Lv, Honghao,Sun, Peitian,Liu, Yumei,Li, Zhansheng,Fang, Zhiyuan,Yang, Limei.

[16]Cgl2 plays an essential role in cuticular wax biosynthesis in cabbage (Brassica oleracea L. var. capitata). Liu, Dongming,Ye, Zhibiao,Liu, Dongming,Tang, Jun,Liu, Zezhou,Dong, Xin,Zhuang, Mu,Zhang, Yangyong,Lv, Honghao,Sun, Peitian,Liu, Yumei,Li, Zhansheng,Fang, Zhiyuan,Yang, Limei. 2017

[17]Wax Crystal-Sparse Leaf 4, encoding a beta-ketoacyl-coenzyme A synthase 6, is involved in rice cuticular wax accumulation. Gan, Lu,Zhu, Shanshan,Zhao, Zhichao,Wang, Xiaole,Zhang, Zhe,Zhang, Xin,Wang, Jie,Wang, Jiulin,Guo, Xiuping,Wan, Jianmin,Liu, Linglong,Wan, Jianmin.

[18]Wax crystal-sparse leaf 3 encoding a beta-ketoacyl-CoA reductase is involved in cuticular wax biosynthesis in rice. Gan, Lu,Wang, Xiaole,Cheng, Zhijun,Wang, Jiulin,Zhang, Zhe,Ren, Yulong,Lei, Cailin,Zhao, Zhichao,Zhu, Shanshan,Lin, Qibing,Wu, Fuqing,Guo, Xiuping,Wang, Jie,Zhang, Xin,Wan, Jianmin,Liu, Linglong,Wan, Jianmin.

[19]Role of lenticels and microcracks on susceptibility of apple fruit to Botryosphaeria dothidea. Guan, Yeqing,Wang, Yi,Wu, Ting,Han, Zhenhai,Zhang, Xinzhong,Chang, Ruifeng,Liu, Guojian.

[20]Primary genome scan for complex body shape-related traits in the common carp Cyprinus carpio. Zhang, Y.,Wang, S.,Li, J.,Jiang, L.,Xu, P.,Sun, X.,Zhang, X.,Lu, C.,Sun, X.,Lu, C.,Wan, Y.. 2013

作者其他论文 更多>>