A proteomic approach to study the mechanism of tolerance to Bt toxins in Ostrinia furnacalis larvae selected for resistance to Cry1Ab

文献类型: 外文期刊

第一作者: Xu, Lina

作者: Xu, Lina;Wang, Zhenying;Zhang, Jie;He, Kanglai;Xu, Lina;Ferry, Natalie;Edwards, Martin G.;Gatehouse, Angharad M. R.;Xu, Lina

作者机构:

关键词: Bacillus thuringiensis;Ostrinia furnacalis (Gueneve);Proteomics;Resistance;V-type proton ATPase catalytic;subunit A;Heat shock 70 kDa proteins

期刊名称:TRANSGENIC RESEARCH ( 影响因子:2.788; 五年影响因子:2.377 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: A Cry1Ab-resistant population of Asian corn borer (ACB-AbR) exhibiting approximately 100 times greater resistance to activated Cry1Ab than a susceptible population (Ostrinia furnacalis; ACB-BtS), was previously shown to exhibit high levels of cross-resistance to Cry1Ah (131-fold), but no cross-resistance to Cry1Ie. It was suggested that the proposed mechanism of resistance was due to the alteration of specific receptors for Cry toxins in the midgut brush border membrane. In the present study a proteomic-based approach was used to identify proteins from brush border membrane vesicles (isolated from both resistant and susceptible Ostrinia furnacalis larvae) interacting with biotinylated Cry1Ab, Cry1Ah, and Cry1Ie. 2D-Electrophoresis in combination with ligand blots were employed and putative protein identities obtained using MALDI-ToF/ToF mass spectrometry. The V-type proton ATPase catalytic subunit A and heat shock 70 kDa proteins were identified as interacting with the Cry toxins tested in the ACB-AbR and ACB-BtS larvae. The biotinylated Cry toxins showed markedly stronger interactions with proteins in the resistant compared to the susceptible larvae, suggesting an up-regulation of the V-type proton ATPase catalytic subunit A and heat shock 70 kDa proteins in the resistant (ACB-AbR) larvae. Interestingly, Cry1Ie interactions with the V-type proton ATPase catalytic subunit A in the ACB-BtS larvae appeared to be absent.

分类号: R394

  • 相关文献

[1]PROTEOMIC ANALYSIS OF NOVEL Cry1Ac BINDING PROTEINS IN Helicoverpa armigera (HUBNER). Chen, Li-Zhen,Liang, Ge-Mei,Zhang, Jie,Wu, Kong-Ming,Guo, Yu-Yuan,Rector, Brian G.. 2010

[2]Effect of pyramiding Bt and CpTI genes on resistance of cotton to Helicoverpa armigera (Lepidoptera: Noctuidae) under laboratory and field conditions. Jinjie Cui,Junyu Luo,Wopke Van Der Werf,Yan Ma,Jingyuan Xia.

[3]Down-regulation of aminopeptidase N and ABC transporter subfamily G transcripts in Cry1Ab and Cry1Ac resistant Asian corn borer, Ostrinia furnacalis (Lepidoptera: Crambidae). Wang, Yueqin,Wang, Yidong,Bai, Shuxiong,Wang, Zhenying,He, Kanglai,Coates, Brad S.. 2017

[4]Effects of Bacillus thuringiensis toxin Cry1Ac and Beauveria bassiana on Asiatic corn borer (Lepidoptera : Crambidae). Ma, Xiao-Mu,Liu, Xiao-Xia,Ning, Xia,Zhang, Bo,Han, Fei,Guan, Xiu-Min,Zhang, Qing-Wen,Tan, Yun-Feng. 2008

[5]Analysis of differentially expressed proteins between the spinetoram-susceptible and -resistant strains of Plutella xylostella (L.). Feng, Xia. 2017

[6]Baseline susceptibility of Cnaphalocrocis medinalis (Lepidoptera : Pyralidae) to Bacillus thuringiensis toxins in China. Hou, M. L.,Peng, Y. F.,Liu, P. L..

[7]Cloning and characterization of a novel Cry1A toxin from Bacillus thuringiensis with high toxicity to the Asian corn borer and other lepidopteran insects. Liang, Gemei,Li, Haitao,He, Kanglai,Song, Fuping,Feng, Xue,Zhang, Jie,Crickmore, Neil,Huang, Dafang.

[8]Downregulation and Mutation of a Cadherin Gene Associated with Cry1Ac Resistance in the Asian Corn Borer, Ostrinia furnacalis (Guenee). Chang, Xue,Wang, Zhenying,He, Kanglai,Gatehouse, Angharad M. R.,Edwards, Martin G.. 2014

[9]Homo logs to Cry toxin receptor genes in a de novo transcriptome and their altered expression in resistant Spodoptera litura larvae. Gong, Liang,Wang, Huidong,Qi, Jiangwei,Hu, Meiying,Han, Lanzhi,Jurat-Fuentes, Juan Luis.

[10]Comparative binding of Cry1Ab and Cry1F Bacillus thuringiensis toxins to brush border membrane proteins from Ostrinia nubilalis, Ostrinia furnacalis and Diatraea saccharalis (Lepidoptera: Crambidae) midgut tissue. Siegfried, Blair D.,Cayabyab, Bonifacio F.,Alcantara, Edwin P.,Huang, Fangneng,He, Kanglai,Nickerson, Kenneth W.. 2013

[11]Fitness costs and stability of Cry1Ab resistance in sugarcane borer, Diatraea saccharalis (F.). Zhang, Liping,Leonard, B. Rogers,Huang, Fangneng,Zhang, Liping,Chen, Mao,Clark, Thomas,Anilkumar, Konasale. 2014

[12]iTRAQ-proteomics and bioinformatics analyses of mammary tissue from cows with clinical mastitis due to natural infection with Staphylococci aureus. Huang, Jinming,Luo, Guojing,Zhang, Zijing,Wang, Xiuge,Ju, Zhihua,Qi, Chao,Zhang, Yan,Wang, Changfa,Li, Rongling,Li, Jianbin,Yin, Weijun,Zhong, Jifeng,Luo, Guojing,Zhang, Zijing,Xu, Yinxue,Moisa, Sonia J.,Loor, Juan J.,Loor, Juan J.,Moisa, Sonia J.,Loor, Juan J.. 2014

[13]A genotypic difference in primary root length is associated with the inhibitory role of transforming growth factor-beta receptor-interacting protein-1 on root meristem size in wheat. He, Xue,Fang, Jingjing,Li, Jingjuan,Qu, Baoyuan,Ren, Yongzhe,Ma, Wenying,Zhao, Xueqiang,Li, Bin,Wang, Daowen,Li, Zhensheng,Tong, Yiping,Fang, Jingjing,Li, Jingjuan,Ren, Yongzhe. 2014

[14]Comparative proteomics of peanut gynophore development under dark and mechanical stimulation. Sun, Yong,Wang, Qingguo,Li, Zhen,Hou, Lei,Liu, Wei,Dai, Shaojun,Sun, Yong.

[15]Label-free quantitative proteomics analysis of cotton leaf response to nitric oxide. Yanyan Meng,Feng Liu,Chaoyou Pang,Shuli Fan,Meizhen Song,Dan Wang,Weihua Li,Shuxun Yu.

[16]iTRAQ Protein Profile Differential Analysis between Somatic Globular and Cotyledonary Embryos Reveals Stress, Hormone, and Respiration Involved in Increasing Plant let Regeneration of Gossypium hirsutum L.. Xiaoyang Ge,Chaojun Zhang,Qianhua Wang,Zuoren Yang,Ye Wang,Xueyan Zhang,Zhixia Wu,Yuxia Hou,Jiahe Wu,Fuguang Li.

[17]Unraveling the Root Proteome Changes and Its Relationship to Molecular Mechanism Underlying Salt Stress Response in Radish (Raphanus sativus L.). Sun, Xiaochuan,Wang, Yan,Xu, Liang,Li, Chao,Zhang, Wei,Luo, Xiaobo,Jiang, Haiyan,Liu, Liwang,Sun, Xiaochuan,Sun, Xiaochuan,Wang, Yan,Xu, Liang,Luo, Xiaobo,Liu, Liwang. 2017

[18]SWATH-MS Quantitative Analysis of Proteins in the Rice Inferior and Superior Spikelets during Grain Filling. Zhu, Fu-Yuan,Xu, Xuezhong,Peng, Xinxiang,Zhu, Guohui,Zhu, Fu-Yuan,Chen, Mo-Xian,Ye, Neng-Hui,Liu, Tie-Yuan,Li, Hao-Xuan,Wang, Guan-Qun,Jin, Yu,Zhang, Jianhua,Zhu, Fu-Yuan,Ye, Neng-Hui,Zhang, Jianhua,Su, Yu-Wen,Cao, Yun-Ying,Lin, Sheng,Gu, Yong-Hai,Chan, Wai-Lung,Lo, Clive. 2016

[19]Effects of Bt transgenic cotton lines on the cotton bollworm parasitoid Microplitis mediator in the laboratory. Liu, XX,Zhang, QW,Zhao, JZ,Li, HC,Xu, BL,Ma, XM. 2005

[20]Proteomic analysis of heterosis in the leaves of sorghum-sudangrass hybrids. Han, Pingan,Lu, Xiaoping,Dong, Jing,Xue, Chunlei,Mi, Fugui,Li, Jianke,Han, Bin,Zhang, Xiaoyu. 2016

作者其他论文 更多>>