Effect of biofumigation and chemical fumigation on soil microbial community structure and control of pepper Phytophthora blight

文献类型: 外文期刊

第一作者: Wang, Qiujun

作者: Wang, Qiujun;Ma, Yan;Yang, Hao;Chang, Zhizhou

作者机构:

关键词: Biofumigation;Disease incidence of pepper;Soil bacterial community;Soil fungal community;Soil chemical properties

期刊名称:WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY ( 影响因子:3.312; 五年影响因子:3.58 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Soil biofumigation with brassica plant residues has been shown to significantly suppress soilborne pathogen. However, little published data reported the impact of biofumigation on microbial community structure in pepper (Capsicum annuum L.) production systems under field conditions. Biofumigation with rapeseed (Brassica napus 'Dwarf Essex') meal and chemical fumigation with dazomet were tested to control the pepper disease caused by Phytophthora capsici. BF treatment showed the lowest disease incidence among these treatments. Effects on soil bacterial and fungal communities were assessed by denaturating gradient gel electrophoresis and the results showed that the biofumigation increased bacterial diversity and decreased fungal diversity. There was a negative correlation between soil bacterial diversity and disease incidence and a positive correlation between soil fungal diversity and disease incidence. Cloning of the microbial community showed that the microbial community structures were altered by biofumigation. Soil was also evaluated for their chemical properties. Biofumigation increased soil content of total N, NO3 (-)-N, available P and available K. A significant correlation between soil microbial community structures and soil chemical properties was found. Overall, these results indicated that biofumigation reduced disease incidence of pepper through altering soil microbial community structures.

分类号: Q93

  • 相关文献

[1]Integration of biofumigation with antagonistic microorganism can control Phytophthora blight of pepper plants by regulating soil bacterial community structure. Wang, Qiujun,Ma, Yan,Wang, Guangfei,Gu, Zhiguang,Sun, Di,An, Xia,Chang, Zhizhou. 2014

[2]Impact of brassicaceous seed meals on the composition of the soil fungal community and the incidence of Fusarium wilt on chili pepper. Ma, Yan,Gentry, Terry,Hu, Ping,Pierson, Elizabeth,Gu, Mengmeng,Yin, Shixue.

[3]Alterations in soil fungal community composition and network assemblage structure by different long-term fertilization regimes are correlated to the soil ionome. Xue, Chao,Zhu, Chen,Guo, Shiwei,Ling, Ning,Shen, Qirong,Penton, C. Ryan,Chen, Huan,Duan, Yinghua,Peng, Chang. 2018

[4]Production of methyl sulfide and dimethyl disulfide from soil-incorporated plant materials and implications for controlling soilborne pathogens. Tharayil, N.,Gerik, J.,Rosen, C.,Kinkel, L.,Cao, A..

[5]Field-based evidence for consistent responses of bacterial communities to copper contamination in two contrasting agricultural soils. Li, Jing,Wang, Jun-Tao,Liu, Yu-Rong,He, Ji-Zheng,Li, Jing,Wang, Jun-Tao,Ma, Yi-Bing,Hu, Hang-Wei,He, Ji-Zheng. 2015

[6]Shifts in soil bacterial communities induced by the controlled-release fertilizer coatings. Pan Pan,Lei Mei,Pan Pan,Jiang Hui-min,Zhang Jian-feng,Yang Jun-cheng,Li Shu-shan,Liu Lian,Zhang Shui-qin. 2016

[7]Response of bacterial community to simulated nitrogen deposition in soils and a unique relationship between plant species and soil bacteria in the Songnen grassland in Northeastern China. Sun, S.,Xing, F.,Zhao, H.,Gao, Y.,Bai, Z.,Zhao, H.,Dong, Y.. 2014

[8]The differentiation of soil bacterial communities along a precipitation and temperature gradient in the eastern Inner Mongolia steppe. Yao, Minjie,Rui, Junpeng,Hedenec, Petr,Li, Jiabao,He, Zhili,Li, Xiangzhen,Yao, Minjie,Rui, Junpeng,Hedenec, Petr,Li, Jiabao,He, Zhili,Li, Xiangzhen,Niu, Haishan,Wang, Junming,Cao, Weidong,Cao, Weidong.

[9]Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem. Hao, Yi,Zhang, Zetian,Rui, Yukui,Liu, Liming,Ma, Chuanxin,Rui, Yukui,Xing, Baoshan,Ma, Chuanxin,Song, Youhong,Cao, Weidong,Zhou, Guopeng,Guo, Jing. 2018

[10]Long-term nickel exposure altered the bacterial community composition but not diversity in two contrasting agricultural soils. Li, Jing,Wang, Jun-Tao,Liu, Yu-Rong,He, Ji-Zheng,Li, Jing,Wang, Jun-Tao,Ma, Yi-Bing,Hu, Hang-Wei,He, Ji-Zheng.

[11]Alteration of soil bacterial interaction networks driven by different long-term fertilization management practices in the red soil of South China. Xun, Weibing,Li, Wei,Ren, Yi,Xiong, Wu,Ran, Wei,Shen, Qirong,Zhang, Ruifu,Xun, Weibing,Zhang, Ruifu,Huang, Ting,Li, Dongchu.

[12]Soil microbial community structure and function are significantly affected by long-term organic and mineral fertilization regimes in the North China Plain. Li, Juan,Lin, Zhi'an,Li, Yanting,Yang, Xiangdong,Zhao, Bingqiang,Cooper, Julia Mary.

[13]Reductions of Fe(III) and pentachlorophenol linked with geochemical properties of soils from Pearl River Delta. Chen, Manjia,Tao, Liang,Li, Fangbai,Lan, Qing. 2014

[14]The effect of long-term reclamation on enzyme activities and microbial community structure of saline soil at Shangyu, China. Liu, Chen,Xu, JianMing,Liu, Chen,Ding, NengFei,Fu, QingLin,Guo, Bin,Lin, YiCheng,Li, Hua,Li, Ningyu. 2013

[15]Effects of reclaimed water irrigation and nitrogen fertilization on the chemical properties and microbial community of soil. Guo Wei,Qi Xue-bin,Li Ping,Li Zhong-yang,Fan Xiang-yang,Zhou Yuan,Guo Wei,Zhou Yuan,Andersen, Mathias N.,Qi Xue-bin,Li Ping,Li Zhong-yang,Fan Xiang-yang. 2017

[16]Effects of Permanent Raised Beds on Soil Chemical Properties in a Wheat-Maize Cropping System. Li Hui,He Jin,Wang Qingjie,Li Hongwen,Sivelli, Amerigo,Lu Caiyun,Zheng Zhiqi,Zhang Xiangcai,Lu Zhanyuan. 2013

[17]CARAGANA FABR. PROMOTES REVEGETATION AND SOIL REHABILITATION IN SALINE-ALKALI WASTELAND. Zhang, Lizhen,Fan, JingJing,Meng, Qiuxia,Niu, Yu. 2013

[18]Effect of chemical fertilization and green manure on the abundance and community structure of ammonia oxidizers in a paddy soil. Fang, Yu,Yan, Zhi-Lei,Chen, Ji-Chen,Wang, Fei,Wang, Ming-Kuang,Lin, Xin-Jian. 2015

[19]Soil Microbiological and Biochemical Properties as Affected by Different Long-Term Banana-Based Rotations in the Tropics. Zhong Shuang,Jin Zhiqiang,Zhong Shuang,Zeng Huicai. 2015

[20]Responses of soil properties, microbial community and crop yields to various rates of nitrogen fertilization in a wheat-maize cropping system in north-central China. Zhao, Shicheng,Qiu, Shaojun,Zhou, Wei,He, Ping,He, Ping,Zhao, Shicheng,Qiu, Shaojun,Zhou, Wei,He, Ping,Cao, Caiyun,Zheng, Chunlian.

作者其他论文 更多>>