Inactivation of a Gene Encoding Carotenoid Cleavage Dioxygenase (CCD4) Leads to Carotenoid-Based Yellow Coloration of Fruit Flesh and Leaf Midvein in Peach

文献类型: 外文期刊

第一作者: Ma, Juanjuan

作者: Ma, Juanjuan;Li, Jing;Zhou, Hui;Wang, Lu;Gu, Chao;Liao, Liao;Han, Yuepeng;Ma, Juanjuan;Zhou, Hui;Zhao, Jianbo;Ren, Fei

作者机构:

关键词: Peach;Carotenoid;Leaf vein coloration;Yellow fruit flesh

期刊名称:PLANT MOLECULAR BIOLOGY REPORTER ( 影响因子:1.595; 五年影响因子:2.042 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Yellow fruit flesh color, resulting from the accumulation of carotenoids, is one of the most important commercial traits of peach. Yellow flesh is controlled by a single locus (Y), with white flesh dominant over yellow flesh. In this study, the Y locus was narrowed to a 2.6-cM interval flanked by two markers, SSRy and W2691. SSRy, which is located on the first exon of a gene encoding carotenoid cleavage dioxygenase (CCD4), was cosegregated with the Y locus in two peach F-1 populations. RNA-Seq and qRT-PCR analysis revealed transcript level of CCD4 was consistent with carotenoid degradation in peach fruits. All these results suggest that CCD4 is responsible for white and yellow coloration of peach fruit flesh. In fruits of white-fleshed peach, carotenoids are synthesized but subsequently degraded into colorless compounds, leading to the formation of white color. CCD4 is likely to utilize beta-carotene as the substrate in peach. Interestingly, CCD4 also controls white and yellow coloration of leaf midveins of peach. Moreover, LCYE was highly expressed in peach leaves, whereas its transcript was not detectable in fruits. This suggests the difference of carotenoid biosynthesis between peach fruits and leaves. Our study not only shows for the first time the pleiotropic effects of CCD4 gene in peach but also provides a morphological marker for easy selection of new peach cultivars with desirable white or yellow flesh colors.

分类号: Q94

  • 相关文献

[1]Accumulation of carotenoids and expression of carotenogenic genes in peach fruit. Cao, Shifeng,Liang, Minhua,Shi, Liyu,Shao, Jiarong,Song, Chunbo,Bian, Kun,Chen, Wei,Yang, Zhenfeng. 2017

[2]Identification and Functional Analysis of Carotenoid Biosynthetic Genes in the Extremely Radioresistant Bacterium Deinococcus radiodurans Genomes. Yang, Qiao,Jiao, Binghua,Zhang, Xiaoling,Zhang, Wenjun,Zhang, Lei,Dai, Jun,Fang, Chengxiang. 2009

[3]Comparative analysis of pigments in red and yellow banana fruit. Cheng, Sihua,Yang, Ziyin,Huang, Bingzhi,Du, Bing,Zeng, Wei. 2018

[4]Correlation between lipid and carotenoid synthesis and photosynthetic capacity in Haematococcus pluvialis grown under high light and nitrogen deprivation stress. Liang, C.,Zhai, Y.,Zhang, W.,Yu, J.,Xu, D.,Ye, N.,Zhang, X.,Wang, Y.. 2015

[5]Late Maturing Longan Pericarp Color Affected by the Changes of Pigment and Total Phenols Contents in the Period of Fruit Keeping Fresh on Plant. Xu, J. H.,Yu, D.,Wei, X. Q.,Xu, L.,Lin, Q. H.,Chen, Z. F.,Zheng, S. Q.,Wu, S. H.. 2010

[6]A histone deacetylase gene, SlHDA3, acts as a negative regulator of fruit ripening and carotenoid accumulation. Guo, Jun-E,Hu, Zongli,Yu, Xiaohui,Li, Anzhou,Li, Fenfen,Wang, Yunshu,Chen, Guoping,Tian, Shibing. 2018

[7]Physiological responses of Hizikia fusiformis to copper and cadmium exposure. Zou, Dinghui,Zhu, Xifeng,Zou, Dinghui,Du, Hong.

[8]Transcriptomic Analyses of Ascorbic Acid and Carotenoid Metabolites Influenced by Root Restriction during Grape Berry Development and Ripening. Leng, Feng,Tang, Dandan,Lin, Qiong,Cao, Jinping,Wu, Di,Sun, Chongde,Lin, Qiong,Wang, Shiping,Cao, Jinping.

[9]RNA interference-based gene silencing of phytoene synthase impairs growth, carotenoids, and plastid phenotype in Oncidium hybrid orchid. Liu, Jian-Xin,Shen, Xiao-Lan,Shen, Fu-Quan,Chiou, Chung-Yi,Shen, Chin-Hui,Chen, Peng-Jen,Liu, Yao-Chung,Yeh, Kai-Wun,Jian, Chin-Der,Shen, Chin-Hui,Chiou, Chung-Yi,Chiou, Chung-Yi. 2014

[10]Efficacy of Alfalfa Saponins on Promoting Pigmentation by Astaxanthin in Blood Parrot Fish (Vieja synspila female x Amphilophus citrinellus male). Song, Hongmei,Wei, Minxia,Mou, Xidong,Liu, Yi,Wang, Xuejie,Liu, Chao,Hu, Yinchang. 2016

[11]Volatile chemical and carotenoid profiles in watermelons [Citrullus vulgaris (Thunb.) Schrad (Cucurbitaceae)] with different flesh colors. Liu, Cuihua,Zhang, Hongyan,Liu, Xi,Liu, Yue,Deng, Xiuxin,Xu, Juan,Dai, Zhaoyi,Chen, Feng. 2012

[12]Carotenoid Profiling in the Peel and Pulp of 36 Selected Musa Varieties. Heng, Zhou,Xie, Shenxi,Heng, Zhou,Sheng, Ou,Yan, Shijuan,Lu, Hongxian,Gao, Huijun,Li, Chunyu,Yang, Qiaosong,Hu, Chunhua,Kuang, Ruibin,Bi, Fangcheng,Dou, Tongxin,Deng, Guiming,Yi, Ganjun,Motorykin, Ievgen.

[13]Sodium taurocholate, a novel effective feed-additive for promoting absorption and pigmentation of astaxanthin in blood parrot (Cichlasoma synspilum female x Cichlasoma citrinellum male). Yang, Huiyun,Mu, Xidong,Luo, Du,Hu, Yinchang,Song, Hongmei,Liu, Chao,Luo, Jianren,Yang, Huiyun.

[14]Patterns of Pigment Changes in Pomegranate (Punica granatum L.) Peel during Fruit Ripening. Zhao, Xueqing,Yuan, Zhaohe,Yin, Yanlei,Feng, Lijuan.

[15]Reversed-Phase High-Performance Liquid Chromatography for the Quantification and Optimization for Extracting 10 Kinds of Carotenoids in Pepper (Capsicum annuum L.) Leaves. Li, Jing,Xie, Jianming,Yu, Jihua,Lv, Jian,Zhang, Junfeng,Wang, Xiaolong,Wang, Cheng,Tang, Chaonan,Zhang, Yingchun,Dawuda, Mohammed Mujitaba,Zhu, Daiqiang,Ma, Guoli,Zhang, Junfeng,Dawuda, Mohammed Mujitaba.

[16]Effect of Bagging on the Composition of Carbohydrate, Organic Acid and Carotenoid Contents in Mango Fruit. Zhao, Jia-Ju,Wang, Jia-Bao,Zhang, Xin-Chun,Li, Huan-Ling,Gao, Zhao-Yin.

[17]Genome-wide analysis of the homeodomain-leucine zipper (HD-ZIP) gene family in peach (Prunus persica). Zhang, C. H.,Ma, R. J.,Shen, Z. J.,Yu, M. L.,Sun, X.,Korir, N. K.. 2014

[18]Isolation and expression analysis of four HD-ZIP III family genes targeted by microRNA166 in peach. Zhang, C. H.,Zhang, B. B.,Ma, R. J.,Yu, M. L.,Guo, S. L.,Guo, L.. 2015

[19]Screening for the molecular marker linked to saucer gene of peach fruit shape. Guo, J,Jiang, Q,Zhang, K,Zhao, J,Yang, Y. 2002

[20]Comparative analysis of models for robust and accurate evaluation of soluble solids content in 'Pinggu' peaches by hyperspectral imaging. Chen, Liping. 2017

作者其他论文 更多>>