Influence of Microwaves Treatment of Rapeseed on Phenolic Compounds and Canolol Content

文献类型: 外文期刊

第一作者: Yang, Mei

作者: Yang, Mei;Zheng, Chang;Zhou, Qi;Liu, Changsheng;Li, Wenlin;Huang, Fenghong;Yang, Mei;Zheng, Chang;Zhou, Qi;Liu, Changsheng;Li, Wenlin

作者机构:

关键词: phenolic compounds;sinapine;sinapic acid;canolol microwave;rapeseed;rapeseed oil

期刊名称:JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY ( 影响因子:5.279; 五年影响因子:5.269 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Rapeseeds were treated with microwaves under 800 Wfor 0, 1, 2, 3, 4, 5, 6, 7, and 8 min at a frequency of 2450 MHz, and oil was extracted with a press to investigate the influence on phenolic compounds, including sinapine, the main free phenolic acids, and canolol content in the rapeseeds and oil from them. The results indicated that sinapine and sinapic acid was the main phenolic compound and free phenolic acid in the rapeseed, respectively, and canolol was the main phenolic compound in the oil from rapeseed by cold press. Microwave treatment significantly influenced phenolic compounds content in the rapeseeds and oil from them. The sinapine, sinapic acid, and canolol content in rapeseed first increased and then decreased depending on the period of microwave radiation (p < 0.05). The canolol content of 7 min microwave pretreatment rapeseed increased to the maximum and was approximately six times greater than that of the unroasted rapeseed. The amount of canolol formed was significantly correlated with the content of sinapic acid and sinapine (for sinapic acid, r = —0.950, p < 0.001, for sinapine, r= -0.828, p < 0.05) and also the loss of sinapic acid and sinapine. (for sinapic acid, r = 0.997, p < 0.001, for sinapine, r = 0.952, p < 0.05) during roasting. There were differences in the transfer rate of difference phenolic compounds to the oil extracted by press. Almost all of the sinapine remained in the cold-pressed cake and only 1.4—2.7% of the sinapic acid, whereas approximately 56—83% of the canolol was transferred to the oil. The transfer ratio of canolol significantly increased with microwave radiation time (p < 0.001). Microwave pretreatment of rapeseed benefited improving the oxidative stability of oil.

分类号: R15`S

  • 相关文献

[1]Effect of Microwave Treatment on Sinapic Acid Derivatives in Rapeseed and Rapeseed Meal. Niu, Yanxing,Jiang, Mulan,Wan, Chuyun,Yang, Mei,Hu, Shuangxi,Niu, Yanxing,Jiang, Mulan,Wan, Chuyun,Yang, Mei,Hu, Shuangxi. 2013

[2]Fluorescence switching sensor for sensitive detection of sinapine using carbon quantum dots. Xiang, Xia,Zhang, Zhen,Han, Ling,Huang, Fenghong,Zheng, Mingming,Tang, Hu,Deng, Qianchun.

[3]Graphene oxide-based fluorescent sensor for sensitive turn-on detection of sinapine. Xiang, Xia,Han, Ling,Zhang, Zhen,Huang, Fenghong.

[4]Changes in the content of canolol and total phenolics, oxidative stability of rapeseed oil during accelerated storage. Zheng, Chang,Yang, Mei,Zhou, Qi,Liu, Chang-Sheng,Huang, Feng-Hong,Zheng, Chang.

[5]Effects of endogenous and exogenous micronutrients in rapeseed oils on the antioxidant status and lipid profile in high-fat fed rats. Deng, Qianchun,Yu, Xiao,Xu, Jiqu,Huang, Fenghong,Huang, Qingde,Liu, Changsheng,Deng, Qianchun,Yu, Xiao,Xu, Jiqu,Huang, Fenghong,Huang, Qingde,Liu, Changsheng,Wang, Lan,Ma, Fangli. 2014

[6]Micronutrients-fortified rapeseed oil improves hepatic lipid accumulation and oxidative stress in rats fed a high-fat diet. Xu, Jiqu,Deng, Qianchun,Huang, Qingde,Yang, Jin'e,Huang, Fenghong,Xu, Jiqu,Deng, Qianchun,Huang, Qingde,Yang, Jin'e,Huang, Fenghong,Zhou, Xiaoqi,Gao, Hui,Chen, Chang,Ma, Jing,Wan, Zhengyang. 2013

[7]Minor components and oxidative stability of cold-pressed oil from rapeseed cultivars in China. Yang, Mei,Zheng, Chang,Zhou, Qi,Huang, Fenghong,Liu, Changsheng,Wang, Hui. 2013

[8]Influence of Microwave Treatment of Rapeseed on Minor Components Content and Oxidative Stability of Oil. Yang, Mei,Huang, Fenghong,Liu, Changsheng,Zheng, Chang,Zhou, Qi,Wang, Hui. 2013

[9]Rapeseed oil fortified with micronutrients reduces atherosclerosis risk factors in rats fed a high-fat diet. Xu, Jiqu,Deng, Qianchun,Huang, Qingde,Yang, Jin'e,Huang, Fenghong,Zhou, Xiaoqi. 2011

[10]PHOTOSYNTHESIS AND ANTIOXIDANT RESPONSE TO WINTER RAPESEED (BRASSICA NAPUS L.) AS AFFECTED BY BORON. Hossain, Md Faruque,Pan Shenggang,Duan Meiyang,Mo Zhaowen,Karbo, Maurice Baimba,Tang Xiangru,Hossain, Md Faruque,Pan Shenggang,Duan Meiyang,Mo Zhaowen,Karbo, Maurice Baimba,Tang Xiangru,Hossain, Md Faruque,Bano, Asghari. 2015

[11]Multigenic Control of Pod Shattering Resistance in Chinese Rapeseed Germplasm Revealed by Genome-Wide Association and Linkage Analyses. Liu, Jia,Wang, Jun,Wang, Hui,Wang, Wenxiang,Zhou, Rijin,Mei, Desheng,Cheng, Hongtao,Yang, Juan,Hu, Qiong,Wang, Jun,Raman, Harsh. 2016

[12]Inheritance and molecular characterization of resistance to AHAS-inhibiting herbicides in rapeseed. Hu Mao-long,Pu Hui-ming,Gao Jian-qin,Long Wei-hua,Chen Feng,Zhou Xiao-ying,Zhang Wei,Peng Qi,Chen Song,Zhang Jie-fu. 2017

[13]Temporal Polarimetric Behavior of Oilseed Rape (Brassica napus L.) at C-Band for Early Season Sowing Date Monitoring. Yang, Hao,Li, Zengyuan,Chen, Erxue,Feng, Qi,Yang, Hao,Zhao, Chunjiang,Yang, Guijun,Casa, Raffaele,Pignatti, Stefano. 2014

[14]Cytoplasmic male sterility with self-incompatibility, a novel approach to utilizing heterosis in rapeseed (Brassica napus L.). Wang, Han-zhong,Shen, Jin-xiong,Fu, Ting-dong,Tian, Bao-ming.

[15]Comparison of Five Endogenous Reference Genes for Specific PCR Detection and Quantification of Brassica napus. Wu, Gang,Zhang, Li,Wu, Yuhua,Cao, Yinglong,Lu, Changming.

[16]Valuable New Resistances Ensure Improved Management of Sclerotinia Stem Rot (Sclerotinia sclerotiorum) in Horticultural and Oilseed Brassica Species. You, Ming Pei,Uloth, Margaret B.,Barbetti, Martin J.,You, Ming Pei,Uloth, Margaret B.,Barbetti, Martin J.,You, Ming Pei,Barbetti, Martin J.,Li, Xi Xiang,Banga, Surinder S.,Banga, Shashi K..

[17]The effect of waterlogging on yield and seed quality at the early flowering stage in Brassica napus L.. Xu, Mingyue,Ma, Haiqing,Zeng, Liu,Cheng, Yong,Lu, Guangyuan,Xu, Jinsong,Zhang, Xuekun,Zou, Xiling,Ma, Haiqing.

[18]Overexpression of CHMP7 from rapeseed and Arabidopsis causes dwarfism and premature senescence in Arabidopsis. Yang, Hongli,Liu, Jing,Lin, Jiulu,Deng, Linbin,Fan, Shihang,Sun, Fengming,Hua, Wei,Guo, Yan.

[19]A large replum-valve joint area is associated with increased resistance to pod shattering in rapeseed. Hu, Zhiyong,Yang, Hongli,Zhang, Liang,Wang, Xinfa,Liu, Guihua,Wang, Hanzhong,Hua, Wei.

[20]A Simple Method for Isolating Chloroplast DNA and Mitochondria DNA from the Same Rapeseed Green Leaf Tissue. Hu Zhi-yong,Zhan Gao-miao,Wang Han-zhong,Hua Wei. 2012

作者其他论文 更多>>