A preliminary study for identification of candidate AFLP markers under artificial selection for shell color in pearl oyster Pinctada fucata

文献类型: 外文期刊

第一作者: Zou, Keshu

作者: Zou, Keshu;Zhang, Dianchang;Guo, Huayang;Zhu, Caiyan;Li, Min;Jiang, Shigui;Zou, Keshu;Zhang, Dianchang;Li, Min;Jiang, Shigui

作者机构:

关键词: AFLP;Artificial selection;Outlier loci;Pinctada fucata;Shell color

期刊名称:GENE ( 影响因子:3.688; 五年影响因子:3.329 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Pearl oyster Pinctada fucata is widely cultured to produce seawater pearl in South China, and the quality of pearl is significantly affected by its shell color. Thus the Pearl Oyster Selective Breeding Program (POSBP) was carried out for the shell color and growth traits. The black (B), gold (G), red (R) and white (W) shell strains with fast growth trait were achieved after five successive generation selection. In this study, AFLP technique was used to scan genome of four strains with different shell colors to identify the candidate markers under artificial selection. Eight AFLP primer combinations were screened and yielded 688 loci, 676 (98.26%) of which were polymorphic. In black, gold, red and white strains, the percentage of polymorphic loci was 90.41%, 87.79%, 93.60% and 93.31%, respectively, Nei's gene diversity was 0.3225, 0.2829, 0.3221 and 0.3292, Shannon's information index was 0.4801, 0.4271, 0.4825 and 0.4923, and the value of FST was 0.1805. These results suggested that the four different shell color strains had high genetic diversity and great genetic differentiation among strains, which had been subjected to the continuous selective pressures during the artificial selective breeding. Furthermore, six outlier loci were considered as the candidate markers under artificial selection for shell color. This study provides a molecular evidence for the inheritance of shell color of P. fucata.

分类号: R394

  • 相关文献

[1]Low genetic differentiation among widely separated populations of the pearl oyster Pinctada fucata as revealed by AFLP. Yu, DH,Chu, KH.

[2]Transcriptome-wide analysis reveals candidate genes responsible for the asymmetric pigment pattern in scallop Patinopecten yessoensis. Sun, X. J.,Zhou, L. Q.,Liu, Z. H.,Wu, B.,Yang, A. G.. 2016

[3]Amplified fragment length polymorphism analysis of Mythimna separata (Lepidoptera : Noctuidae) geographic and melanie laboratory populations in China. Luo, Li-Zhi,Zhang, Lei.

[4]QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Fu-Ding Sun,Jian-Hong Zhang,Shu-Fang Wang,Wan-Kui Gong,Yu-Zhen Shi,Ai-Ying Liu,Jun-Wen Li,Ju-Wu Gong,Hai-Hong Shang,You-Lu Yuan.

[5]Analysis of Fitness Predominance for Gaoyou Duck's Double Yolk Egg. Zhang, Tangjie,Chang, Hong,Li, Hui-Fang,Chen, Kuanwei,Zhao, Yonggao,Xuec, Minkai,Zhang, Shengfu. 2011

[6]A genomic perspective on the important genetic mechanisms of upland adaptation of rice. Lyu, Jun,Gou, Zhiheng,Wang, Wen,Li, Baoye,Zhang, Shilai,Zhang, Jing,Tao, Dayun,Huang, Wangqi,Hu, Fengyi,He, Weiming,Meng, Liyun,Li, Xin. 2014

[7]Functional markers in wheat: current status and future prospects. Liu, Yanan,He, Zhonghu,Xia, Xianchun,He, Zhonghu,Appels, Rudi.

[8]Genome-wide association mapping of QTL underlying seed oil and protein contents of a diverse panel of soybean accessions. Li, Ying-hui,Hong, Hui-long,Li, Hui-hui,Liu, Zhang-xiong,Tian, Yun,Li, Yan-fei,Qiu, Li-juan,Reif, Jochen C.,Ma, Yan-song,Li, Jun,Li, Wen-bin. 2018

[9]Evidence of balancing selection in multiple indigenous chicken populations. Arlud, S.,Zeng, S. C.,Arlud, S.,Arlud, S.,E, G. X.. 2016

[10]A non-synonymous SNP within the isopentenyl transferase 2 locus is associated with kernel weight in Chinese maize inbreds (Zea mays L.). Weng, Jianfeng,Liu, Changlin,Hao, Zhuanfang,Li, Mingshun,Zhang, Degui,Ci, Xiaoke,Li, Xinhai,Zhang, Shihuang,Li, Bo,Wang, Hongwei,Yang, Xiaoyan. 2013

[11]OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap. Xiong, Haiyan,Zhu, Xiaoyang,Zhang, Hongliang,Miao, Jinli,Zhang, Zhanying,Yao, Guoxin,Zhang, Qiang,Pan, Yinghua,Wang, Xin,Rashid, M. A. R.,Li, Jinjie,Li, Zichao,Li, Huihui,Wang, Wensheng,Gao, Yongming,Li, Zhikang,Tang, Zuoshun,Yang, Weicai,Fu, Xiangdong,Pan, Yinghua. 2017

[12]Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing. Li, Ying-hui,Yan, Long,Qi, Xiao-tian,Zhang, Le,Chang, Ru-zhen,Guo, Yong,Wang, Xiao-bo,Guan, Rong-xia,Liu, Yu-lin,Jin, Long-guo,Liu, Zhang-xiong,Zhang, Li-juan,Wang, Ke-jing,Qiu, Li-juan,Zhao, Shan-cen,Li, Dong,Li, Jun,Guo, Xiao-sen,He, Wei-ming,Liang, Qin-si,Ye, Chen,Tao, Yong,Wang, Jun-yi,Zhang, Xiu-qing,Chen, Jie,Nielsen, Rasmus,Li, Rui-qiang,Wang, Jian,Wang, Jun,Ma, Jian-xin,Yan, Long,Zhang, Meng-chen,Tao, Yong,Nielsen, Rasmus,Wang, Jun,Wang, Jun-yi,Nielsen, Rasmus,Nielsen, Rasmus,Chen, Peng-yin,Li, Wen-bin,Reif, Jochen C.,Purugganan, Michael,Purugganan, Michael. 2013

[13]Gene duplication confers enhanced expression of 27-kDa gamma-zein for endosperm modification in quality protein maize. Liu, Hongjun,Sun, Chuanlong,Zheng, Xixi,Yuan, Ningning,Li, Changsheng,Zhang, Zhiyong,Deng, Yiting,Wang, Jiechen,Wu, Yongrui,Shi, Junpeng,Lai, Jinsheng,Shi, Junpeng,Lai, Jinsheng,Gong, Hao,Huang, Xuehui,Feng, Qi,Han, Bin,Fan, Xingming,Qiu, Fazhan,Pan, Guangtang,Pan, Guangtang.

[14]Pedigree-based analysis of derivation of genome segments of an elite rice reveals key regions during its breeding. Zhou, Degui,Wang, Chongrong,Li, Hong,Li, Kanghuo,Zhou, Shaochuan,Chen, Wei,Lin, Zechuan,Chen, Haodong,Yu, Renbo,Zhen, Gang,He, Hang,Deng, Xing Wang,Chen, Wei,Lin, Zechuan,Chen, Haodong,Yu, Renbo,Zhen, Gang,He, Hang,Deng, Xing Wang,Chen, Wei,Chen, Haodong,Yu, Renbo,Zhen, Gang,Tang, Xiaoyan,He, Hang,Deng, Xing Wang,Zhang, Fengyun,Yi, Junliang,Zhou, Shaochuan,Liu, Yaoguang,Terzaghi, William,He, Hang,Deng, Xing Wang.

[15]Molecular analysis of grass carp (Ctenopharyngodon idella) by SRAP and SCAR molecular markers. Ding, Wei-dong,Cao, Zhe-ming,Cao, Li-ping.

[16]Molecular characterization and expression analysis of the I kappa B gene from pearl oyster Pinctada fucata. Xu, Xinping,Zhang, Dianchang,Jiang, Shigui,Qiu, Lihua,Su, Tianfeng,Wu, Kaichang,Li, Youning,Zhu, Caiyan,Zhang, Dianchang. 2009

[17]Common pearl oysters in China, Japan, and Australia are conspecific: evidence from ITS sequences and AFLP. Yu, Da Hui,Jia, Xiaoping,Chu, Ka Hou. 2006

[18]Molecular characterization and expression analysis of a putative LPS-induced TNF-alpha factor (LITAF) from pearl oyster Pinctada fucata. Zhang, Dianchang,Jiang, Jingjing,Jiang, Shigui,Ma, Jianjun,Su, Tianfeng,Qiu, Lihua,Zhu, Caiyan,Zhang, Dianchang,Jiang, Jingjing,Ma, Jianjun,Xu, Xinping,Xu, Xinping. 2009

[19]Identification of twenty novel polymorphic microsatellite DNA markers from transcripts of the pearl oyster Pinctada fucata using next-generation sequencing approach. Fan, Sigang,Wang, Jingxuan,Huang, Guiju,Liu, Baosuo,Yu, Dahui,Wang, Jingxuan. 2015

[20]Isolation and screening of microsatellite markers from the pearl oyster, Pinctada fucata using FIASCO method. Yu, Da-Hui,Qu, Ni-Ni,Huang, Gui-Ju. 2015

作者其他论文 更多>>