Identification of copper-binding proteins in soybean seeds by immobilized metal affinity chromatography and mass spectrometry

文献类型: 外文期刊

第一作者: Wang, Yun

作者: Wang, Yun;Li, Huan;Qiu, Yanfei;Li, Nan;Sun, Weihong;Shan, Zhihui

作者机构:

关键词: Copper-binding protein;immobilized metal affinity chromatography;metal-binding motif;proteome;soybean

期刊名称:PLANT BIOSYSTEMS ( 影响因子:2.838; 五年影响因子:2.146 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Metalloproteomics is defined as the structural and functional characterization of putative metal-binding proteins on a genome-wide scale. In this study, we carried out a systematic screen for copper-binding proteins in soybean seeds through the combined use of immobilized metal affinity chromatography and two-dimensional gel electrophoresis. A total of 32 protein spots displaying copper-binding ability were unambiguously identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometric analysis. About 78% of these identified proteins contain the possible copper-binding motifs, namely, H-(X)(n)-H (n=0-5, 7, and 12), H-(X)(3)-C, H-(X)(6)-M, M-(X)(7)-H, and C-(X)(n)-C (n=2-4). Available functional information suggested that the majority of the identified proteins are involved in storage, defense response, redox homeostasis, carbohydrate metabolism, and protein biosynthesis. Accordingly, the methodology reported here has the potential utility in additional metalloproteomic screening.

分类号: Q94

  • 相关文献

[1]Comparative analyses of transcriptome and proteome in response to cotton bollworm between a resistant wild soybean and a susceptible soybean cultivar. Wang, Xiaoyi,Lu, Jianhua,Chen, Haifeng,Shan, Zhihui,Shen, Xinjie,Duan, Bingbing,Zhang, Chanjuan,Yang, Zhonglu,Zhang, Xiaojuan,Qiu, Dezhen,Chen, Shuilian,Zhou, Xinan,Jiao, Yongqing,Wang, Xiaoyi,Lu, Jianhua.

[2]A Comparative Proteomics Analysis of Soybean Cotyledon and Unifoliolate Leaves Under Heat (Chilling) Treatments. Jiang, Hong-wei,Xin, Da-wei,Shan, Cai-yun,Wang, Jin-hui,Chen, Qing-shan,Jiang, Hong-wei,Liu, Chun-yan,Hu, Guo-hua,Xin, Da-wei,Zhu, Rong-sheng,Hu, Zhen-bang,Chen, Qing-shan,Qiu, Hong-mei.

[3]iTRAQ-based analysis of developmental dynamics in the soybean leaf proteome reveals pathways associated with leaf photosynthetic rate. Qin, Jun,Wang, Fengmin,Zhang, Mengchen,Xu, Jin,Zhang, Jianan,Liu, Duan,Yin, Changcheng,Chen, Hao,Chen, Pengyin,Qin, Jun,Ma, Jinbing,Zhang, Bo.

[4]Affinity purification and characterisation of zinc chelating peptides from rapeseed protein hydrolysates: Possible contribution of characteristic amino acid residues. Xie, Ningning,Huang, Jingjing,Cheng, Jianghua,Wang, Zhuochen,Yin, Junfeng,Yan, Xiaoming,Li, Bo,Li, Bo.

[5]Comparative proteomic analysis reveals the mechanisms governing cotton fiber differentiation and initiation. Kang Liu,Meiling Han,Chaojun Zhang,Liangyu Yao,Jing Sun,Tianzhen Zhang.

[6]iTRAQ-Based Comparative Proteomic Analysis of Seedling Leaves of Two Upland Cotton Genotypes Differing in Salt Tolerance. Wenfang Gong,Feifei Xu,Du, Xiongming,Junling Sun,Zhen Peng,Shoupu He,Zhaoe Pan,Xiongming Du. 2017

[7]iTRAQ-facilitated proteomic profiling of anthers from a photosensitive male sterile mutant and wild-type cotton (Gossypium hirsutum L.). Ji Liu,Chaoyou Pang,Hengling Wei,Meizhen Song,Yanyan Meng,Jianhui Ma,Shuli Fan,Shuxun Yu.

[8]Proteomic analysis of mycelial proteins from Magnaporthe oryzae under nitrogen starvation. Zhou, X. -G.,Zhao, Z. -W.,Zhou, X. -G.,Yu, P.,Dong, C.,Yao, C. -X.,Ding, Y. -M.,Tao, N.,Zhou, X. -G.,Yu, P.,Dong, C.,Yao, C. -X.,Ding, Y. -M.,Tao, N.. 2016

[9]Comparative transcriptome and proteome profiling of two Citrus sinensis cultivars during fruit development and ripening. Liu, Jian-jun,Chen, Ke-ling,Li, Hong-wen,He, Jian,Guan, Bin,He, Li,Wang, Jian-hui,Liu, Jian-jun,Chen, Ke-ling,Li, Hong-wen,He, Jian,Guan, Bin,He, Li,Wang, Jian-hui,Liu, Jian-jun,Chen, Ke-ling,Li, Hong-wen,He, Jian,Guan, Bin,He, Li. 2017

[10]Transcriptomic and proteomic analysis of Locusta migratoria eggs at different embryonic stages: Comparison for diapause and non-diapause regimes. Hao Kun,Wang Jie,Tu Xiong-bing,Zhang Ze-hua,Whitman, Douglas W.. 2017

[11]Proteomics Dissection of Cold Responsive Proteins Based on PEG Fractionation in Arabidopsis. Wang Shang,Xi Jinghui,Li Shanyu,Liu Xiangguo,Hao Dongyun. 2014

[12]Relationship between proteome changes of Longissimus muscle and intramuscular fat content in finishing pigs fed conjugated linoleic acid. Zhong, Weijing,Jiang, Zongyong,Zheng, Chuntian,Lin, Yingcai,Zhong, Weijing,Yang, Lin,Zou, Shutong. 2011

[13]Proteomic analysis of responsive root proteins of Fusarium oxysporum-infected watermelon seedlings. Zhang, Man,Xu, Jinhua,Liu, Guang,Yao, Xiefeng,Ren, Runsheng,Yang, Xingping. 2018

[14]Modulation of protein expression in alfalfa (&ITMedicago sativa&IT L.) root and leaf tissues by &ITFusarium proliferatum&IT. Cong Li-li,Long Rui-cai,Kang Jun-mei,Zhang Tie-jun,Wang Zhen,Yang Qing-chuan,Sun Yan,Li Ming-na,Cong Li-li. 2017

[15]Comparative Analyses of Proteome Complement Between Worker Bee Larvae of High Royal Jelly Producing Bees (A. m. ligustica) and Carniolian Bees (A. m. carnica). Chen Jian,Li Jian-ke. 2009

[16]Proteomic analysis of differentially expressed proteins between the male and female worm of Schistosomal japonicum after pairing. Cheng, GF,Lin, JJ,Feng, XG,Fu, ZQ,Jin, YM,Yuan, CX,Zhou, YC,Cai, YM. 2005

[17]Changes in the proteomic profiles of mouse brain after infection with cyst-forming Toxoplasma gondii. Zhou, Dong-Hui,Zhao, Fu-Rong,Huang, Si-Yang,Xu, Min-Jun,Song, Hui-Qun,Zhu, Xing-Quan,Su, Chunlei,Zhu, Xing-Quan. 2013

[18]Proteomic Analysis Reveals Different Involvement of Embryo and Endosperm Proteins during Aging of Yliangyou 2 Hybrid Rice Seeds. Xu, Heng-Heng,Liu, Shu-Jun,Wang, Wei-Qing,Song, Song-Quan,Li, Ni,Moller, Ian M.. 2016

[19]Proteomic Analysis of Chicken Skeletal Muscle during Embryonic Development. Ouyang, Hongjia,Wang, Zhijun,Chen, Xiaolan,Yu, Jiao,Li, Zhenhui,Nie, Qinghua,Ouyang, Hongjia,Wang, Zhijun,Chen, Xiaolan,Yu, Jiao,Li, Zhenhui,Nie, Qinghua,Ouyang, Hongjia,Wang, Zhijun,Chen, Xiaolan,Yu, Jiao,Li, Zhenhui,Nie, Qinghua. 2017

[20]A Quantitative Proteomic Analysis of Brassinosteroid-induced Protein Phosphorylation in Rice (Oryza sativa L.). Hou, Yuxuan,Qiu, Jiehua,Wang, Yifeng,Li, Zhiyong,Zhao, Juan,Tong, Xiaohong,Lin, Haiyan,Zhang, Jian,Lin, Haiyan. 2017

作者其他论文 更多>>