A new volatiles-based differentiation method of Chinese spirits using longpath gas-phase infrared spectroscopy

文献类型: 外文期刊

第一作者: Dong, D.

作者: Dong, D.;Zheng, W.;Wang, W.;Zhao, X.;Jiao, L.;Zhao, C.

作者机构:

关键词: Volatiles;Principal component analysis;FTIR;Chinese spirits

期刊名称:FOOD CHEMISTRY ( 影响因子:7.514; 五年影响因子:7.516 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The volatile compounds of different brands of Chinese spirits differ with respect to their composition and concentration. The infrared spectral characteristics of volatile gases from several brands of Chinese spirits were studied. We used a longpath gas cell to enhance the performance of the gas-phase infrared spectroscopy. Principal component analysis (PCA) was used for the discrimination of the different brands of spirits. It is demonstrated that different brands of Chinese spirits with the same flavour and from the same origin can be successfully differentiated.

分类号: TS2`TS201.2

  • 相关文献

[1]Comprehensive Quality Assessment Based Specific Chemical Profiles for Geographic and Tissue Variation in Gentiana rigescens Using HPLC and FTIR Method Combined with Principal Component Analysis. Li, Jie,Zhang, Ji,Zhao, Yan-Li,Wang, Yuan-Zhang,Li, Jie,Huang, Heng-Yu. 2017

[2]Allelopathic effects of Parthenium hysterophorus L. volatiles and its chemical components. Chen, Yebing,Wang, Jinxin,Wu, Xiaohu,Sun, Jian,Yang, Na,Chen, Yebing.

[3]Profiling Taste and Aroma Compound Metabolism during Apricot Fruit Development and Ripening. Xi, Wanpeng,Zheng, Huiwen,Zhang, Qiuyun,Xi, Wanpeng,Li, Wenhui. 2016

[4]Odor, Not Performance, Dictates Bemisia tabaci's Selection between Healthy and Virus Infected Plants. Chen, Gong,Zheng, Huixin,Chen, Gong,Shi, Xiaobin,Liu, Xin,Peng, Zhengke,Zheng, Huixin,Xie, Wen,Xu, Baoyun,Wang, Shaoli,Wu, Qingjun,Zhang, Youjun,Su, Qi,Zhou, Xuguo. 2017

[5]Hydrolysis of glycosidically bound volatiles from apple leaves (cv. Anna) by Aspergillus niger beta-glucosidase affects the behavior of codling moth (Cydia pomonella L.). Wei, S,Reuveny, H,Bravdo, BA,Shoseyov, O. 2004

[6]Elevated O-3 increases volatile organic compounds via jasmonic acid pathway that promote the preference of parasitoid Encarsia formosa for tomato plants. Cui, Hongying,Wei, Jianing,Su, Jianwei,Ge, Feng,Cui, Hongying,Li, Chuanyou.

[7]Electrophysiological responses of the rice striped stem borer &ITChilo suppressalis&IT to volatiles of the trap plant vetiver grass (&ITVetiveria zizanioides&IT L.). Lu Yan-hui,Liu Kai,Zheng Xu-song,Lu Zhong-xian. 2017

[8]Characterization of volatile compounds in Criollo, Forastero, and Trinitario cocoa seeds (Theobroma cacao L.) in China. Qin, Xiao-Wei,Lai, Jian-Xiong,Tan, Le-He,Hao, Chao-Yun,Li, Fu-Peng,He, Shu-Zhen,Song, Ying-Hui,Qin, Xiao-Wei,Tan, Le-He,Hao, Chao-Yun,Tan, Le-He,He, Shu-Zhen. 2017

[9]The terpene synthase gene family in Gossypium hirsutum harbors a linalool synthase GhTPS12 implicated in direct defence responses against herbivores. Xiao, Yu-Tao,Jing, Wei-Xia,Kou, Jun-Feng,Liu, Dan-Feng,Gu, Shao-Hua,Zhang, Yong-Jun,Guo, Yu-Yuan,Xiao, Yu-Tao,Koellner, Tobias G.,Chen, Jie-Yin,Wu, Jun-Xiang. 2018

[10]Volatiles of plums evaluated by HS-SPME with GC-MS at the germplasm level. Chai, Qianqian,Li, Shaohua,Chai, Qianqian,Wu, Benhong,Wang, Lijun,Yang, Chunxiang,Wang, Yiju,Chai, Qianqian,Liu, Weisheng,Liu, Youchun,Fang, Jinbao.

[11]Effects of volatile substances of Streptomyces globisporus JK-1 on control of Botrytis cinerea on tomato fruit. Zheng, Lu,Huang, Junbin,Li, Guoqing,Li, Qili,Ning, Ping,Hsiang, Tom. 2012

[12]Electrophysiological and behavioural responses of the tea geometrid Ectropis obliqua (Lepidoptera: Geometridae) to volatiles from a non-host plant, rosemary, Rosmarinus officinalis (Lamiaceae). Zhang, Zhengqun,Bian, Lei,Sun, Xiaoling,Luo, Zongxiu,Xin, Zhaojun,Luo, Fengjian,Chen, Zongmao.

[13]Chinese vinegar classification via volatiles using long-optical-path infrared spectroscopy and chemometrics. Dong, D.,Zheng, W.,Jiao, L.,Lang, Y.,Zhao, X..

[14]Volatile characteristics of 50 peaches and nectarines evaluated by HP-SPME with GC-MS. Wang, Yiju,Li, Shaohua,Wang, Yiju,Yang, Chunxiang,Yang, Liu,Wang, Younian,Zhao, Jianbo,Jiang, Quan,Wang, Yiju.

[15]Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure. An, Kejing,Wu, Jijun,Xu, Yujuan,Xiao, Gengsheng,Zhao, Dandan,Wang, Zhengfu,Zhao, Dandan,Wang, Zhengfu.

[16]Effects of the combination treatment of 1-MCP and ethylene on the ripening of harvested banana fruit. Zhu, Xiaoyang,Shen, Lin,Fu, Danwen,Si, Zhenwei,Chen, Weixin,Li, Xueping,Wu, Bin.

[17]Surface characterization of corn stalk superfine powder studied by FTIR and XRD. Zhao, Xiaoyan,Chen, Jun,Chen, Fengliang,Wang, Xianchang,Zhu, Qingjun,Ao, Qiang.

[18]FTIR Assessment of the Secondary Structure of Proteins in Royal Jelly under Different Storage Conditions. Zhou Qun,Sun Su-qin,Wu Li-ming,Hu Fu-liang,Wu Li-ming,Zhou Xiao,Zhao Jing. 2009

[19]Application of Fourier Transform Infrared Spectroscopy in Identification of Wine Spoilage. Zhao Xian-de,Dong Da-ming,Zheng Wen-gang,Jiao Lei-zi,Lang Yun. 2014

[20]Research on Grape Deterioration Process via Volatiles-Using Long Optical-Path Infrared Spectroscopy and Simplified E-Nose. Zheng Wen-gang,Jiao Lei-zi,Zhao Xian-de,Dong Da-ming. 2016

作者其他论文 更多>>