Ultrasensitive fluorescence detection of nucleic acids using exonuclease III-induced cascade two-stage isothermal amplification-mediated zinc (II)-protoporphyrin IX/G-quadruplex supramolecular fluorescent nanotags

文献类型: 外文期刊

第一作者: Xue, Qingwang

作者: Xue, Qingwang;Lv, Yanqin;Zhang, Yuanfu;Xu, Shulin;Li, Rui;Yue, Qiaoli;Li, Haibo;Wang, Lei;Liu, Jifeng;Gu, Xiaohong;Zhang, Shuqiu

作者机构:

关键词: Fluorescence detection;ZnPPIX/G-quadruplex structure;Magnetic nanoparticles;Exonuclease III;Biosensor;Two-stage isothermal amplification

期刊名称:BIOSENSORS & BIOELECTRONICS ( 影响因子:10.618; 五年影响因子:9.323 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: A cascadic sensing system was developed for detection of DNA target at ultralow concentration by a combination of magnetic nanoparticles (MNPs) and exonuclease III (Exo III)-induced cascade two-stage isothermal amplification in the study. An ingeniously designed capture hairpin probe (CHP) that integrates target-binding and signal transduction sequences within one multifunctional design was assembled on MNPs. Upon sensing of the analyte nucleic acid, the hairpin probe on MNPs could be opened and stepwise removed by Exo III accompanied by the releasing of target DNA for the successive hybridization and cleavage process and the generation of bare signal transduction sequences of CHP as a new trigger for next circular reaction. The new DNA triggers initiate hybridizing with hairpin DNA probe that contains a partially "caged" G-quadruplex sequence (GHP), forming a duplex structure and liberating the active G-quadruplex structure. Then, Exo III digests the resulting duplex domain, leading to the recycling of new DNA trigger and simultaneously generating numerous ZnPPIX/G-quadruplex supramolecular complexes with the help of the zinc (II)-protoporphyrin IX (ZnPPIX), as an optical label for amplified fluorescence sensing event. Finally, numerous liberated cascade ZnPPIX/G-quadruplex supramolecular complexes give a remarkable fluorescence response. Because of two-stage autocatalytic recycling amplification and the specifically catalyzed formation of ZnPPIX/G-quadruplex supramolecular complexes, this newly designed protocol provides a high sensitivity with a detection limit of 0.75 fM, can discriminate mismatched DNA from perfectly matched target DNA, and gives low matrix effect due to using MNPs as the separation and amplification elements in the real samples. Therefore, it holds great potential for early diagnosis in gene-related diseases.

分类号: Q

  • 相关文献

[1]MoS2 nanosheet-based fluorescent biosensor for protein detection via terminal protection of small-molecule-linked DNA and exonuclease III-aided DNA recycling amplification. Xiang, Xia,Huang, Fenghong,Zheng, Mingming,Deng, Qianchun,Xu, Jiqu,Shi, Jianbin.

[2]Label-free DNA Y junction for bisphenol A monitoring using exonuclease III-based signal protection strategy. Chen, Junhua,Zhou, Shungui.

[3]Determination of tryptophan in bee pollen and royal jelly by high-performance liquid chromatography with fluorescence detection. Zhang, Jin-zhen,Xue, Xiao-feng,Zhou, Jin-hui,Chen, Fang,Wu, Li-ming,Li, Yi,Zhao, Jing. 2009

[4]Magnetic metal-organic framework MIL-100(Fe) microspheres for the magnetic solid-phase extraction of trace polycyclic aromatic hydrocarbons from water samples. Du, Fuyou,Qin, Qun,Ruan, Guihua,Li, Jianping,Yang, Xianqing,Li, Laihao,Du, Fuyou,Ruan, Guihua,Li, Jianping.

[5]Direct Fluorescent Detection of a Polymethoxyflavone in Cell Culture and Mouse Tissue. Chen, Jingjing,Song, Mingyue,Wu, Xian,Zheng, Jinkai,He, Lili,McClements, David Julian,Decker, Eric,Xiao, Hang,Xiao, Hang,Zheng, Jinkai.

[6]Graphene oxide: An adsorbent for the extraction and quantification of aflatoxins in peanuts by high-performance liquid chromatography. Yu, Li,Li, Peiwu,Zhang, Qi,Zhang, Wen,Ding, Xiaoxia,Wang, Xiupin,Yu, Li,Zhang, Qi,Zhang, Wen,Ding, Xiaoxia,Wang, Xiupin,Li, Peiwu,Li, Peiwu,Ding, Xiaoxia,Yu, Li,Li, Peiwu,Zhang, Wen,Wang, Xiupin.

[7]LC Analysis of Aliphatic Primary Amines and Diamines After Derivatization with 2,6-Dimethyl-4-quinolinecarboxylic Acid N-Hydroxysuccinimide Ester. Huang, Ke-Jing,Wei, Cai-Yun,Xie, Wan-Zhen,Liu, Yan-Ming,Chen, Yong-Hong,Zhang, Jun-Feng.

[8]Determining hydrogen cyanamide in fruit by derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate and HPLC with fluorescence detection. Cai, Xiao-Ming,Zhao, Hua,Wu, Min,Hu, Xiu-Qing,He, Hong-Mei,Zhang, Chang-Peng,Zhang, Chun-Rong,Li, Zhen,Cai, Xiao-Ming,Zhao, Hua,Wu, Min,Hu, Xiu-Qing,He, Hong-Mei,Zhang, Chang-Peng,Zhang, Chun-Rong,Li, Zhen,Cai, Xiao-Ming,Zhao, Hua,Wu, Min,Hu, Xiu-Qing,He, Hong-Mei,Zhang, Chang-Peng,Zhang, Chun-Rong,Li, Zhen.

[9]A DNA nanomachine based on rolling circle amplification-bridged two-stage exonuclease III-assisted recycling strategy for label-free multi-amplified biosensing of nucleic acid. Xue, Qingwang,Lv, Yanqin,Cui, Hui,Liu, Jifeng,Gu, Xiaohong,Zhang, Shuqiu,Liu, Jifeng.

[10]Rapid Screening and Identification of BSA Bound Ligands from Radix astragali Using BSA Immobilized Magnetic Nanoparticles Coupled with HPLC-MS. Liu, Liangliang,Leng, Juan,Yang, Xiai,Liao, Liping,Xiao, Aiping,Ma, Lei,Cen, Yin.

[11]Preparation of Tetraethylenepentamine Modified Magnetic Graphene Oxide for Adsorption of Dyes from Aqueous Solution. Tang, Xiaosheng,Tang, Xiaosheng,Tang, Xiaosheng,Tang, Ping,Liu, Liangliang,Tang, Ping. 2018

[12]Magnetically triggered drug release from nanoparticles and its applications in anti-tumor treatment. Hua, Xin,Yang, Qin,Zhang, Wanjiang,Wang, Qiudong,Dong, Zhimin,Zhang, Jiashuo,Tan, Shengnan,Smyth, Hugh D. C.. 2017

[13]Enhanced Performance of Magnetic Graphene Oxide-Immobilized Laccase and Its Application for the Decolorization of Dyes. Chen, Jing,Leng, Juan,Yang, Xiai,Liao, Liping,Liu, Liangliang,Xiao, Aiping.

[14]Magnetic molecularly imprinted polymers for the determination of beta-agonist residues in milk by ultra high performance liquid chromatography with tandem mass spectrometry. Liu, Hongcheng,Lin, Xin,Lin, Tao,Luo, Yinglan,Li, Qiwan,Liu, Hongcheng,Lin, Xin,Lin, Tao,Luo, Yinglan,Li, Qiwan,Liu, Hongcheng,Lin, Xin,Lin, Tao,Luo, Yinglan,Li, Qiwan,Zhang, Yulong.

[15]A reusable and sensitive biosensor for total mercury in canned fish based on fluorescence polarization. Shen, Tongfei,Yue, Qiaoli,Jiang, Xiuxiu,Wang, Lei,Xu, Shuling,Li, Haibo,Liu, Jifeng,Gu, Xiaohong,Zhang, Shuqiu.

[16]A novel immunosensor for squamous cell carcinoma antigen determination based on CdTe@Carbon dots nanocomposite electrochemiluminescence resonance energy transfer. Li, Shuhuai,Luo, Jinhui,Yang, Xinfeng,Wan, Yao,Liu, Chunhua.

[17]Optimization of ultrasound-assisted magnetic retrieval-linked ionic liquid dispersive liquid-liquid microextraction for the determination of cadmium and lead in water samples by graphite furnace atomic absorption spectrometry. Wang, Xie,Liu, Haitao,Lin, Chaowen,Pang, Liangyu,Yang, Junwei,Zeng, Qingbin.

[18]Degradation of nonylphenol polyethoxylates by functionalized Fe3O4 nanoparticle-immobilized Sphingomonas sp Y2. Bai, Naling,Wang, Sheng,Abuduaini, Rexiding,Zhao, Yuhua,Bai, Naling,Sun, Pengfei,Zhu, Xufen. 2018

[19]Simultaneous Extraction, Enrichment and Removal of Dyes from Aqueous Solutions Using a Magnetic Aqueous Micellar Two-Phase System. Wu, Shuanggen,Sun, Danyu,Li, Fenfang,Wang, Chaoyun,Yang, Yuanru,Tan, Zhijian,Wang, Chaoyun,Yang, Yuanru,Tan, Zhijian. 2017

[20]Chemiluminescent Detect of E. coli O157:H7 Using Immunological Method Based on Magnetic Nanoparticles. Li, Zhiyang,He, Nongyue,Li, Song,Liu, Hongna,Li, Xiaolong,Li, Zhiyang,He, Lei,Shi, Zhiyang,Wang, Hua,Dai, Yabin,Wang, Zhifei.

作者其他论文 更多>>