A comparison of different methods of decomposing maize straw in China

文献类型: 外文期刊

第一作者: Kuang, Enjun

作者: Kuang, Enjun;Chi, Fengqin;Su, Qingrui;Zhang, Jiuming;Jeng, Alhaji S.

作者机构:

关键词: maize;straw returning;decomposition rates;accelerator;straw placement

期刊名称:ACTA AGRICULTURAE SCANDINAVICA SECTION B-SOIL AND PLANT SCIENCE ( 影响因子:1.694; 五年影响因子:1.568 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: It is important to understand the dynamics of crop residue decomposition in soils to predict the release of nutrients from remaining residues. The aim of this study is to investigate and monitor the nutrient release processes of crop residue decomposition in soils. For this, a nylon mesh bag method was used. Four maize straw treatments were investigated over a period of 150 days: (1) maize straw above ground placement (AG), (2) maize straw above ground with decomposer accelerator (AGDA), (3) below ground placement (BG), and (4) maize straw below ground/buried placement (BGDA). The decomposition of maize straw and nutrient release between the different treatments showed statistically significant differences. The effect of BG on maize straw decomposition was higher than AG due to better moisture, soil, and microbial contact conditions underground (incorporation) than above ground. However, the effect of the decomposer accelerator (DA) was not significantly different from the other treatments in this study. This may be due to DA being unsuitable for the local area and climate. The rate of maize straw mass decomposition in all four treatments varied from 38.9% (AGDA) to 66.3% (BG) in 150 days. Below ground placement was better for maize straw decomposition than above ground placement, hence it is advisable to incorporate the maize straw residues into the soil rather than leaving it on the soil surface. The organic C mineralization rate varied between 43.2% and 65.9%. The N release rates ranged between 51.1% and 67.7%, for P 76.0-89.8%, and for K release 76.9-91.7%. The release of potassium was higher than 80%, indicating the necessity of less potassium applied in fertilizer. To sum up, incorporating maize straw residues in the soil increases the C pool and nutrient release compared to surface placement

分类号: S

  • 相关文献

[1]Effect of accelerator type on dynamic properties of natural rubber vulcanizates. Gao, Tianming,Huang, Maofang,Li, Puwang,Xie, Ruihong. 2014

[2]Effects of Straw Returning on Soil Enzyme Activity and Stability of Soil Aggregates in Flue-cured Tobacco Field. Zhang, Ji-Guang,Bo, Guo-Dong,Zhang, Zhong-Feng,Shen, Guo-Ming,Gao, Lin,Yu, Hui-Yong,Xu, Jia-Lai,Wang, Yi. 2015

[3]Treated domestic sewage irrigation significantly decreased the CH4, N2O and NH3 emissions from paddy fields with straw incorporation. Wang, Shaohua,Xu, Shanshan,Hou, Pengfu,Xue, Lihong,Yang, Linzhang.

[4]Construction and characterization of a bacterial artificial chromosome library of the maize inbred line Qi319. Mu, Chun Hua,Zhang, Fa Jun,Li, Wen Cai,Lu, Shou Ping,Meng, Zhao Dong,Liu, Xia,Mu, Chun Hua,Liu, Xia,Yang, Yu,Li, Guang Cun. 2016

[5]Genome-wide high-resolution mapping of DNA methylation identifies epigenetic variation across embryo and endosperm in Maize (Zea may). Wang, Pengfei,Ma, Chuanxi,Wang, Pengfei,Xia, Han,Zhang, Ye,Zhao, Shuzhen,Zhao, Chuanzhi,Hou, Lei,Li, Changsheng,Li, Aiqin,Wang, Xingjun. 2015

[6]ZmFKBP20-1 improves the drought and salt tolerance of transformed Arabidopsis. Yu, Yanli,Li, Yanjiao,Zhao, Meng,Li, Wencai,Sun, Qi,Li, Wenlan,Meng, Zhaodong,Jia, Fengjuan,Jia, Fengjuan,Li, Nana. 2017

[7]Effects of pollination-prevention on leaf senescence and post-silking nitrogen accumulation and remobilization in maize hybrids released in the past four decades in China. Guo, Song,Chen, Fanjun,Yuan, Lixing,Mi, Guohua,Guo, Song.

[8]Determination of 16 Mycotoxins in Maize by Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry. Li, Xia,Liu, Bin,Wang, Fengen,Ma, Xinfeng,Li, Zengmei,Guo, Dongliang,Wang, Yutao,Deng, Ligang,Zhang, Shuqiu,Wan, Fachun. 2018

[9]Meta-analysis of constitutive QTLs for disease resistance in maize and its synteny conservation in the rice genome. Zhao, L.,Wang, Q. Y.,Liu, H. J.,Zhang, C. X.,Li, X. H.. 2015

[10]Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses. Feng, Shangguo,Yang, Yanjun,Xu, Mingfeng,Wang, Huizhong,Shen, Chenjia,Yue, Runqing,Zhang, Lei. 2015

[11]Silver nanoparticles deteriorate the mutual interaction between maize (Zea mays L.) and arbuscular mycorrhizal fungi: a soil microcosm study. Cao, Jiling,Feng, Youzhi,Lin, Xiangui,Cao, Jiling,Feng, Youzhi,Lin, Xiangui,Cao, Jiling,Feng, Youzhi,Lin, Xiangui,Cao, Jiling,He, Shiying. 2017

[12]The changes of organelle ultrastructure and Ca2+ homeostasis in maize mesophyll cells during the process of drought-induced leaf senescence. Ma, Yuan-Yuan,Guo, Xiu-Lin,Liu, Zi-Hui,Ma, Yuan-Yuan,Shao, Hong-Bo,Shao, Hong-Bo,Liu, Bin-Hui. 2011

[13]Establishment of a core collection for maize germplasm preserved in Chinese National Genebank using geographic distribution and characterization data. Li, Y,Shi, YS,Cao, YS,Wang, TY. 2004

[14]Genome-wide analysis of maize NLP transcription factor family revealed the roles in nitrogen response. Ge, Min,Jiang, Lu,Wang, Yuancong,Lv, Yuanda,Zhou, Ling,Liang, Shuaiqiang,Bao, Huabin,Zhao, Han,Liu, Yuhe. 2018

[15]Maize production emulation system based on cooperative models. Li, Shijuan,Zhu, Yeping. 2008

[16]Dissection of Recombination Attributes for Multiple Maize Populations Using a Common SNP Assay. Guan, Haiying,Guan, Haiying,Guan, Haiying,Ali, Farhan,Pan, Qingchun. 2017

[17]Genome-wide analysis of the maize (Zea may L.) CPP-like gene family and expression profiling under abiotic stress. Song, X. Y.,Zhang, Y. Y.,Wu, F. C.,Zhang, L.. 2016

[18]Expression analysis of genes encoding double B-box zinc finger proteins in maize. Li, Wenlan,Sun, Qi,Li, Wencai,Yu, Yanli,Zhao, Meng,Meng, Zhaodong,Wang, Jingchao. 2017

[19]Candidate Loci for Yield-Related Traits in Maize Revealed by a Combination of MetaQTL Analysis and Regional Association Mapping. Chen, Lin,An, Yixin,Li, Yong-Xiang,Li, Chunhui,Shi, Yunsu,Song, Yanchun,Zhang, Dengfeng,Wang, Tianyu,Li, Yu. 2017

[20]Genome-Wide Association Study and QTL Mapping Reveal Genomic Loci Associated with Fusarium Ear Rot Resistance in Tropical Maize Germplasm. Chen, Jiafa,Ding, Junqiang,Wu, Jianyu,Chen, Jiafa,Ding, Junqiang,Wu, Jianyu,Wu, Jianyu,Chen, Jiafa,Shrestha, Rosemary,Zheng, Hongjian,Mu, Chunhua,Mahuku, George,Zheng, Hongjian,Mu, Chunhua,Mahuku, George. 2016

作者其他论文 更多>>