Improvement of nitrogen accumulation and metabolism in rice (Oryza sativa L.) by the endophyte Phomopsis liquidambari

文献类型: 外文期刊

第一作者: Yang, Bo

作者: Yang, Bo;Ma, Hai-Yan;Wang, Xiao-Mi;Jia, Yong;Hu, Jing;Dai, Chuan-Chao;Li, Xia

作者机构:

关键词: Fungal endophyte;Nitrogen accumulation;Nitrogen metabolism;Rice;Symbiosis

期刊名称:PLANT PHYSIOLOGY AND BIOCHEMISTRY ( 影响因子:4.27; 五年影响因子:4.816 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The fungal endophyte Phomopsis liquidambari can enhance nitrogen (N) uptake and metabolism of rice plants under hydroponic conditions. To investigate the effects of P. liquidambari on N accumulation and metabolism in rice (Oryza sativa L.) under field conditions during the entire growing season (S1, the seedling stage;S2, the tillering stage;S3, the heading stage;S4, the ripening stage), we utilized pot experiments to examine metabolic and physiological levels in both shoot and root tissues of rice, with endophyte (E+) and without endophyte (E-), in response to three different N levels. We found that under low-N treatment, P. liquidambari symbiosis increased the rice yield and N use efficiency by 12% and by 11.59%, respectively;that the total N contents in E+ rice plants at the four growth stages were separately increased by 29.05%, 14.65%, 21.06% and 18.38%, respectively;and that the activities of nitrate reductase and glutamine synthetase in E+ rice roots and shoots were significantly increased by fungal infection during the S1 to S3 stages. Moreover, P. liquidambari significantly increased the free NH_4~+, NO_3~-, amino acid and soluble protein contents in infected rice tissues under low-N treatment during the S1 to S3 stages. The obtained results offer novel data concerning the systemic changes induced by P. liquidambari in rice during the entire growth period and confirm the hypothesis that the rice eP. liquidambari interaction improved the N accumulation and metabolism of rice plants, consequently increasing rice N utilization in nutrient-limited soil.

分类号: Q945;Q946

  • 相关文献

[1]Effects of the fungal endophyte Phomopsis liquidambari on nitrogen uptake and metabolism in rice. Yang, Bo,Wang, Xiao-Mi,Ma, Hai-Yan,Jia, Yong,Dai, Chuan-Chao,Li, Xia.

[2]Extensive host range of an endophytic fungus affects the growth and physiological functions in rice (Oryza sativa L.). Yuan, Zhi-Lin,Dai, Chuan-Chao,Li, Xia,Tian, Lin-Shuang,Wang, Xing-Xiang. 2007

[3]Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). Wang, Huan,Shi, Decheng,Liu, Bao,Yang, Chunwu,Zhang, Meishan,Guo, Rui,Lin, Xiuyun. 2012

[4]Yield and nitrogen accumulation and partitioning in winter wheat under elevated CO2: A 3-year free-air CO2 enrichment experiment. Han, Xue,Hao, Xingyu,Li, Yingchun,Ju, Hui,Lin, Erda,Hao, Xingyu,Lam, Shu Kee,Wang, Heran,Wheeler, Tim.

[5]Comparison of high-yield rice in tropical and subtropical environments - II. Nitrogen accumulation and utilization efficiency. Ying, JF,Peng, SB,Yang, GQ,Zhou, N,Visperas, RM,Cassman, KG. 1998

[6]Depth of nitrogen fertiliser placement affects nitrogen accumulation, translocation and nitrate-nitrogen content in soil of rainfed wheat. Duan, W.,Shi, Y.,Zhang, Y.,Yu, Zh.,Duan, W.,Zhao, J.. 2015

[7]Parental material and cultivation determine soil bacterial community structure and fertility. Sun, Li,Shen, Qirong,Zhang, Ruifu,Sun, Li,Shen, Qirong,Zhang, Ruifu,Gao, Jusheng,Zhang, Ruifu,Huang, Ting,Kendall, Joshua R. A.. 2015

[8]Transmission of symbiotic fungus with a nonsocial leaf-rolling weevil. Ding, Jianqing,Li, Xiaoqiong,Wen, Yuanguang,Guo, Wenfeng,Solanki, Manoj Kumar. 2016

[9]The epidemicity of facultative microsymbionts in faba bean rhizosphere soils. Xiong, Hui Yang,Zhang, Xing Xing,Guo, Hui Juan,Ji, Yuan Yuan,Li, Ying,Wang, Xiao Lin,Zhao, Wei,Mo, Fei Yu,Chen, Jin Cheng,Chen, Wen Xin,Tian, Chang Fu,Yang, Tao,Zong, Xuxiao.

[10]Agrobacterium salinitolerans sp nov., a saline-alkaline-tolerant bacterium isolated from root nodule of Sesbania cannabina. Yan, Jun,Han, Xiao Zeng,Li, Yan,Xie, Zhi Hong,Yan, Hui,Chen, Wen Feng,Yan, Hui,Chen, Wen Feng,Yan, Hui,Chen, Wen Feng,Zhang, Xiaoxia,Wang, En Tao.

[11]Cellular responses in the cyanobacterial symbiont during its vertical transfer between plant generations in the Azolla microphylla symbiosis. Bergman, Birgitta,Rasmussen, Ulla,Zheng, Weiwen,Chen, Bin,Zheng, Siping,Zheng, Weiwen,Xiang, Guan.

[12]The invasive MED/Q Bemisia tabaci genome: a tale of gene loss and gene gain. Xie, Wen,Yang, Xin,Yang, Zezhong,Guo, Litao,Wen, Yanan,Wu, Qingjun,Wang, Shaoli,Zhang, Youjun,Chen, Chunhai,Wang, Dan,Huang, Jinqun,Zhang, Hailin,Zhao, Jinyang,Coates, Brad S.,Zhou, Xuguo. 2018

[13]Identification and Analysis of Medicago truncatula Auxin Transporter Gene Families Uncover their Roles in Responses to Sinorhizobium meliloti Infection. Shen, Chenjia,Sun, Tao,Yang, Yanjun,Wang, Huizhong,Yue, Runqing,Tie, Shuanggui,Bai, Youhuang,Feng, Rong,Wang, Xiaofei.

[14]Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Latef, Arafat Abdel Hamed Abdel,He Chaoxing.

[15]Influence of arbuscular mycorrhizae on biomass and root morphology of selected strawberry cultivars under salt stress. Fan, Li,Dube, Claudine,Khanizadeh, Shahrokh,Fan, Li,Fang, Chengquan,Dalpe, Yolande.

[16]On the origin of plants and relations to contemporary cyanobacterial-plant symbioses. Bergman, Birgitta,Ran, Liang,Zheng, Wei-Wen. 2008

[17]Identification of microRNAs and their mRNA targets during soybean nodule development: functional analysis of the role of miR393j-3p in soybean nodulation. Yan, Zhe,Hossain, Md Shakhawat,Valdes-Lopez, Oswaldo,Wang, Jun,Libault, Marc,Stacey, Gary,Yan, Zhe,Hossain, Md Shakhawat,Valdes-Lopez, Oswaldo,Wang, Jun,Libault, Marc,Stacey, Gary,Arikit, Siwaret,Zhai, Jixian,Meyers, Blake C.,Arikit, Siwaret,Zhai, Jixian,Meyers, Blake C.,Wang, Jun,Qiu, Lijuan,Ji, Tieming.

[18]'Candidatus Moeniiplasma glomeromycotorum', an endobacterium of arbuscular mycorrhizal fungi. Naito, Mizue,Desiro, Alessandro,Bonfante, Paola,Gonzalez, Jonathan B.,Tao, Gang,Pawlowska, Teresa E.,Morton, Joseph B.,Desiro, Alessandro,Tao, Gang.

[19]Horizontal transfer of facultative endosymbionts is limited by host relatedness. Lukasik, Piotr,Guo, Huifang,van Asch, Margriet,Henry, Lee M.,Godfray, H. Charles J.,Ferrari, Julia,Guo, Huifang,Ferrari, Julia.

[20]Planting density and leaf-square regulation affected square size and number contributing to altered insecticidal protein content in Bt cotton. Yuan Chen,Chen, Dehua,Yabing Li,Yuan Chen,Eltayib H.M.A. Abidallha,Dapeng Hu,Yuan Li,Xiang Zhang,Dehua Chen.

作者其他论文 更多>>