Effect of calcium on strawberry fruit flavonoid pathway gene expression and anthocyanin accumulation

文献类型: 外文期刊

第一作者: Xu, Wenping

作者: Xu, Wenping;Peng, Hui;Yang, Tianbao;Whitaker, Bruce;Huang, Luhong;Peng, Hui;Huang, Luhong;Sun, Jianghao;Chen, Pei

作者机构:

关键词: Anthocyanins;Calcium;Fruit color;Phenolics;Woodland strawberry

期刊名称:PLANT PHYSIOLOGY AND BIOCHEMISTRY ( 影响因子:4.27; 五年影响因子:4.816 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Two diploid woodland strawberry (Fragaria vesca) inbred lines, Ruegen F7-4 (red fruit-bearing) and YW5AF7 (yellow fruit-bearing) were used to study the regulation of anthocyanin biosynthesis in fruit. Ruegen F7-4 fruit had similar total phenolics and anthocyanin contents to commercial octoploid (F. × ananassa) cultivar Seascape, while YW5AF7 exhibited relatively low total phenolics content and no anthocyanin accumulation. Foliar spray of CaCl_2 boosted fruit total phenolics content, especially anthocyanins, by more than 20% in both Seascape and RF7-4. Expression levels of almost all the flavonoid pathway genes were comparable in Ruegen F7-4 and YW5AF7 green-stage fruit. However, at the turning and ripe stages, key anthocyanin structural genes, including flavanone 3-hydroxylase (F3H1), dihydroflavonol 4-reductase (DFR2), anthocyanidin synthase (ANS1), and UDP-glucosyltransferase (UGT1), were highly expressed in Ruegen F7-4 compared with YW5AF7 fruit. Calcium treatment further stimulated the expression of those genes in Ruegen F7-4 fruit. Anthocyanins isolated from petioles of YW5AF7 and Ruegen F-7 had the same HPLCeDAD profile, which differed from that of Ruegen F-7 fruit anthocyanins. All the anthocyanin structural genes except FvUGT1 were detected in petioles of YW5AF7 and Ruegen F-7. Taken together, these results indicate that the "yellow" gene in YW5AF7 is a fruit specific regulatory gene(s) for anthocyanin biosynthesis. Calcium can enhance accumulation of anthocyanins and total phenolics in fruit possibly via upregulation of anthocyanin structural genes. Our results also suggest that the anthocyanin biosynthesis machinery in petioles is different from that in fruit.

分类号: Q945;Q946

  • 相关文献

[1]Phenolic Profiles and Antioxidant Activity of Litchi (Litchi Chinensis Sonn.) Fruit Pericarp from Different Commercially Available Cultivars. Li, Wu,Liang, Hong,Zhang, Ming-Wei,Zhang, Rui-Fen,Deng, Yuan-Yuan,Wei, Zhen-Cheng,Zhang, Yan,Tang, Xiao-Jun. 2012

[2]Phenolic Composition and Antioxidant Activity in Seed Coats of 60 Chinese Black Soybean (Glycine max L. Merr.) Varieties. Zhang, Rui Fen,Zhang, Fang Xuan,Zhang, Ming Wei,Wei, Zhen Cheng,Yang, Chun Ying,Zhang, Yan,Tang, Xiao Jun,Deng, Yuan Yuan,Chi, Jian Wei. 2011

[3]Phenolic Profiles and Antioxidant Activity of Black Rice Bran of Different Commercially Available Varieties. Zhang, Ming Wei,Liu, Rui Hai,Zhang, Ming Wei,Zhang, Rui Feng,Zhang, Fang Xuan,Liu, Rui Hai.

[4]Transcriptome Analysis of Calcium and Hormone-Related Gene Expressions during Different Stages of Peanut Pod Development. Li, Yan,Meng, Jingjing,Yang, Sha,Guo, Feng,Zhang, Jialei,Geng, Yun,Cui, Li,Li, Xinguo,Wan, Shubo. 2017

[5]Calcium contributes to photoprotection and repair of photosystem II in peanut leaves during heat and high irradiance. Yang, Sha,Wang, Fang,Guo, Feng,Meng, Jing-Jing,Li, Xin-Guo,Yang, Sha,Guo, Feng,Meng, Jing-Jing,Li, Xin-Guo,Wan, Shu-Bo,Wang, Fang. 2015

[6]Transcriptome and Differential Expression Profiling Analysis of the Mechanism of Ca2+ Regulation in Peanut (Arachis hypogaea) Pod Development. Yang, Sha,Zhang, Jialei,Geng, Yun,Guo, Feng,Meng, Jingjing,Li, Xinguo,Li, Lin,Wang, Jianguo,Sui, Na,Wan, Shubo. 2017

[7]The effects of nutritional restriction on neutral lipid accumulation in Chlamydomonas and Chlorella. Deng, Xiaodong,Fei, Xiaowen,Li, Yajun,Fei, Xiaowen. 2011

[8]Comparative Analysis of Alfalfa Seeds between Space Flight Mutation and Its Control by Raman Spectroscopy. Ren Wei-bo,Xu Zhu,Chen Li-bo,Zhang Yun-wei,Deng Bo. 2010

[9]Effects of Dietary Calcium Levels on Growth Performance, Blood Biochemistry and Whole Body Composition in Juvenile Bighead Carp (Aristichthys nobilis). Liang, Hualiang,Ji, Ke,Ge, Xianping,Ren, Mingchun,Xie, Jun,Mi, Haifeng,Ge, Xianping,Ren, Mingchun,Xie, Jun. 2018

[10]Calcium involved in the poly(gamma-glutamic acid)-mediated promotion of Chinese cabbage nitrogen metabolism. Xu, Zongqi,Lei, Peng,Feng, Xiaohai,Liang, Jinfeng,Chi, Bo,Xu, Hong,Xu, Zongqi,Lei, Peng,Feng, Xiaohai,Liang, Jinfeng,Chi, Bo,Xu, Hong,Xu, Xianju,Feng, Xiaohai,Liang, Jinfeng,Chi, Bo,Xu, Hong. 2014

[11]Intracellular Ca2+ during fertilization and artificial activation in mouse oocytes. Deng, MQ,Fan, BQ. 1996

[12]Calcium-dependent electroactive biofilm structure and electricity generation in bioelectrochemical systems. Liu, Ting,Cai, Xixi,Yuan, Yong,Zhou, Shungui,Liu, Ting,Rao, Liqun,Ding, Guochun. 2015

[13]Effects of sodium gluconate and phytase on performance and bone characteristics in broiler chickers. Guo, Yanli,Shi, Yanghong,Li, Fadi,Zhen, Chen,Hao, Zhengli,Chen, Jilan.

[14]Calcium treatments promote the aroma volatiles emission of pear (Pyrus ussuriensis 'Nanguoli') fruit during post-harvest ripening process. Wei, Shuwei,Qin, Gaihua,Zhang, Huping,Tao, Shutian,Wu, Jun,Zhang, Shaoling,Wei, Shuwei,Wang, Shaomin,Qin, Gaihua.

[15]Effects of Endogenous Salicylic Acid During Calcium Deficiency-Induced Tipburn in Chinese Cabbage (Brassica rapa L. ssp pekinensis). Su, Tongbing,Yu, Shuancang,Yu, Ruifang,Zhang, Fenglan,Yu, Yangjun,Zhang, Deshuang,Zhao, Xiuyun,Wang, Weihong,Su, Tongbing,Yu, Shuancang,Yu, Ruifang,Zhang, Fenglan,Yu, Yangjun,Zhang, Deshuang,Zhao, Xiuyun,Wang, Weihong.

[16]Activation of cAMP-response element-binding protein is positively regulated by PKA and calcium-sensitive calcineurin and negatively by PKC in insect. Yang, Huipeng,He, Xiaobai,Deng, Xiaoyan,Liao, Yuan,Zhu, Chenggang,Shi, Ying,Zhou, Naiming,Yang, Jingwen,Zhang, Zhifang.

[17]Cadmium-induced apoptosis of Siberian tiger fibroblasts via disrupted intracellular homeostasis. Wang, Hui,Liu, Zheng,Wang, Hui,Zhang, Wenxiu,Yuan, Ziao,Yuan, Hongyi,Liu, Xueting,Guan, Weijun,Yang, Chunwen. 2016

[18]Heterologous Expression and Functional Analysis of Rice GLUTAMATE RECEPTOR-LIKE Family Indicates its Role in Glutamate Triggered Calcium Flux in Rice Roots. Ni, Jun,Yu, Zhiming,Zhang, Yanyan,Shen, Chenjia,Xu, Jing,Liu, Xunyan,Du, Guankui,Taylor, Jemma L.,Wang, Yifeng,Wu, Yunrong. 2016

[19]Contribution of VMA5 to vacuolar function, stress response, ion homeostasis and autophagy in Candida albicans. Jia, Chang,Yu, Qilin,Xiao, Chenpeng,Dong, Yijie,Zhang, Meng,Zhang, Dan,Li, Mingchun,Dong, Yijie,Zhao, Qiang,Zhang, Biao.

[20]Overexpression of soybean GmCBL1 enhances abiotic stress tolerance and promotes hypocotyl elongation in Arabidopsis. Li, Zhi-Yong,Xu, Zhao-Shi,Chen, Ming,Li, Lian-Cheng,Ma, You-Zhi,Li, Zhi-Yong,He, Guang-Yuan,Yang, Guang-Xiao.

作者其他论文 更多>>