Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.)

文献类型: 外文期刊

第一作者: Li, Feng

作者: Li, Feng;Chen, Biyun;Xu, Kun;Wu, Jinfeng;Song, Weilin;Liu, Shengyi;Gao, Guizhen;Wang, Nian;Yan, Guixin;Qiao, Jiangwei;Li, Jun;Li, Hao;Xiao, Xin;Zhang, Tianyao;Wu, Xiaoming;Bancroft, Ian;Harper, Andrea L.;Trick, Martin

作者机构:

关键词: Association mapping;Brassica napus;Seed quality;Seed weight;SNP

期刊名称:DNA RESEARCH ( 影响因子:4.458; 五年影响因子:5.371 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Association mapping can quickly and efficiently dissect complex agronomic traits. Rapeseed is one of the most economically important polyploid oil crops, although its genome sequence is not yet published. In this study, a recently developed 60K Brassica Infinium? SNP array was used to analyse an association panel with 472 accessions. The single-nucleotide polymorphisms (SNPs) of the array were in silico mapped using 'pseudomolecules' representative of the genome of rapeseed to establish their hypothetical order and to perform association mapping of seed weight and seed quality. As a result, two significant associations on A8 and C3 of Brassica napus were detected for erucic acid content, and the peak SNPs were found to be only 233 and 128 kb away from the key genes BnaA.FAE1 and BnaC.FAE1. BnaA.FAE1 was also identified to be significantly associated with the oil content. Orthologues of Arabidopsis thaliana HAG1 were identified close to four clusters of SNPs associated with glucosinolate content on A9, C2, C7 and C9. For seed weight, we detected two association signals on A7 and A9, which were consistent with previous studies of quantitative trait loci mapping. The results indicate that our association mapping approach is suitable for fine mapping of the complex traits in rapeseed.

分类号: Q75

  • 相关文献

[1]Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). Xu, Liping,Hu, Kaining,Wen, Jing,Yi, Bin,Shen, Jinxiong,Ma, Chaozhi,Tu, Jinxing,Fu, Tingdong,Zhang, Zhenqian,Guan, Chunyun,Chen, Song,Hua, Wei,Li, Jiana.

[2]A genome-wide association study of plant height and primary branch number in rapeseed (Brassica napus). Li, Feng,Chen, Biyun,Xu, Kun,Gao, Guizhen,Yan, Guixin,Qiao, Jiangwei,Li, Jun,Li, Hao,Li, Lixia,Xiao, Xin,Zhang, Tianyao,Wu, Xiaoming,Li, Feng,Nishio, Takeshi.

[3]Identification of QTL with large effect on seed weight in a selective population of soybean with genome-wide association and fixation index analyses. Yan, Long,Hofmann, Nicolle,Quigley, Charles,Fickus, Edward,Cregan, Perry,Song, Qijian,Li, Shuxian,Ferreira, Marcio Elias,Song, Baohua,Jiang, Guoliang,Ren, Shuxin,Hofmann, Nicolle. 2017

[4]Effects of planting system, plant density and flower removal on yield and quality of hybrid seed in cotton. Dong, HZ,Zhang, DM,Tang, W,Li, WJ,Li, ZH. 2005

[5]Cucumber (Cucumis sativus L.) seed performance as influenced by ovary and ovule position. Jing, HC,Bergervoet, JHW,Jalink, H,Klooster, M,Du, SL,Bino, RJ,Hilhorst, HWM,Groot, SPC. 2000

[6]Effects of the dominant glandless gene Gl(2)(e) on agronomic and fibre characters of Upland cotton. Y.L Yuan,,Y.H Chen,C.M Tang,S.R Jing,S.L Liu,J.J Pan,R.J Kohel,T.Z Zhang. 2000

[7]Comprehensive Screening of Some West and Central African Sesame Genotypes for Drought Resistance Probing by Agromorphological, Physiological, Biochemical and Seed Quality Traits. Dossa, Komivi,Yehouessi, Louis W.,Cisse, Ndiaga,Dossa, Komivi,Liao, Boshou,Zhang, Xiurong,Dossa, Komivi,Diouf, Diaga,Likeng-Li-Ngue, Benoit C.,Bell, Joseph M.. 2017

[8]Effects of Two Low Phytic Acid Mutations on Seed Quality and Nutritional Traits in Soybean (Glycine max L. Merr). Yuan, Feng-Jie,Shu, Qing-Yao,Yuan, Feng-Jie,Zhu, Dan-Hua,Fu, Xu-Tun,Dong, De-Kun,Zhu, Shen-Long,Li, Bai-Quan,Deng, Bo,Shu, Qing-Yao.

[9]Mechanical Harvesting Effects on Seed Yield Loss, Quality Traits and Profitability of Winter Oilseed Rape (Brassica napus L.). Ma Ni,Zhang Chun-lei,Li Jun,Li Guang-ming,Zhang Shu-jie,Zhang Ming-hai,Cheng Yu-gui. 2012

[10]Heavy Metals in Sea Cucumber Juveniles from Coastal Areas of Bohai and Yellow Seas, North China. Jiang, Haifeng,Tang, Shizhan,Qin, Dongli,Chen, Zhongxiang,Wang, Jinlong,Bai, Shuyan,Mou, Zhenbo.

[11]Phenotypic traits and diversity of different 100-seed weight accessions of wild soybean (Glycine soja Sieb. & Zucc.) in China. Yan, X.,Li, J.,Guo, W.,Liu, X.,Zhang, L.,Dong, Y.. 2017

[12]Increasing maize seed weight by enhancing the cytoplasmic ADP-glucose pyrophosphorylase activity in transgenic maize plants. Wang, Zhangying,Chen, Xiaoping,Wang, Jianhua,Liu, Tingsong,Liu, Yan,Zhao, Li,Wang, Guoying. 2007

[13]Genetic mapping of yield traits using RIL population derived from Fuchuan Dahuasheng and ICG6375 of peanut (Arachis hypogaea L.). Chen, Yuning,Ren, Xiaoping,Zheng, Yanli,Zhou, Xiaojing,Huang, Li,Yan, Liying,Jiao, Yongqing,Chen, Weigang,Huang, Shunmou,Wan, Liyun,Lei, Yong,Liao, Boshou,Huai, Dongxin,Wei, Wenhui,Jiang, Huifang.

[14]Genetic differentiation in relation to seed weights in wild soybean species (Glycine soja Sieb. & Zucc.). Wang, Ke-Jing,Li, Xiang-Hua,Yan, Mao-Fen.

[15]Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Liu, Jing,Hua, Wei,Hu, Zhiyong,Yang, Hongli,Zhang, Liang,Deng, Linbin,Sun, Xingchao,Wang, Xinfa,Wang, Hanzhong,Li, Rongjun.

[16]Association mapping of yield-related traits and SSR markers in wild soybean (Glycine sofa Sieb. and Zucc.). Hu, Zhenbin,Zhang, Dan,Zhang, Guozheng,Kan, Guizhen,Hong, Delin,Yu, Deyue,Hu, Zhenbin,Zhang, Dan. 2014

[17]Association mapping analysis of fiber yield and quality traits in Upland cotton (Gossypium hirsutum L.). Mulugeta Seyoum Ademe,Du, Xiongming,Jia, Yinhua,Shoupu He,Zhaoe Pan,Junling Sun,Qinglian Wang,Hongde Qin,Jinhai Liu,Hui Liu,Jun Yang,Dongyong Xu,Jinlong Yang,Zhiying Ma,Jinbiao Zhang,Zhikun Li,Zhongmin Cai,Xuelin Zhang,Xin Zhang,Aifen Huang,Xianda Yi,Guanyin Zhou,Lin Li,Haiyong Zhu,Baoyin Pang,Liru Wang,Yinhua Jia,Xiongming Du.

[18]Association of Candidate Genes With Submergence Response in Perennial Ryegrass. Wang, Xicheng,Wang, Xicheng,Jiang, Yiwei,Pei, Zhongyou,Liu, Huifen,Jiang, Yiwei,Zhao, Xiongwei,Xiao, Xiangye,Zhao, Xiongwei,Song, Xin. 2017

[19]Identification of genome-wide single-nucleotide polymorphisms (SNPs) associated with tolerance to chromium toxicity in spring wheat (Triticum aestivum L.). Almas, Fakhrah,Hassan, Adeel,Bibi, Arfa,Ali, Masab,Lateef, Sadia,Mahmood, Tariq,Quraishi, Umar Masood,Rasheed, Awais. 2018

[20]Genetic dissection of seminal root architecture in elite durum wheat germplasm. Sanguineti, M. C.,Li, S.,Maccaferri, M.,Corneti, S.,Rotondo, F.,Chiari, T.,Tuberosa, R.. 2007

作者其他论文 更多>>