Transcriptome comparison reveals the patterns of selection in domesticated and wild ramie (Boehmeria nivea L. Gaud)

文献类型: 外文期刊

第一作者: Liu, Touming

作者: Liu, Touming;Tang, Shouwei;Zhu, Siyuan;Tang, Qingming;Zheng, Xia

作者机构:

关键词: Ramie;Transcriptome;Ka/Ks;Domestication;Selective pattern

期刊名称:PLANT MOLECULAR BIOLOGY ( 影响因子:4.076; 五年影响因子:4.89 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Ramie is an old fiber crop, cultivated for thousands of years in China. The cultivar ramie evolved from the wild species Qingyezhuma (QYZM, Boehmeria nivea var. tenacissima). However, the mechanism of domestication of this old fiber crop is poorly understood. In order to characterize the selective pattern in ramie domestication, orthologous genes between the transcriptomes of domesticated ramie variety Zhongzhu 1 (ZZ1) and wild QYZM were assessed using bidirectional best-hit method and ratio of non-synonymous (Ka) to synonymous (Ks) nucleotide substitutions was estimated. Sequence comparison of 56,932 and 59,246 unigenes from the wild QYZM and domesticated ZZ1, respectively, helped identify 10,745 orthologous unigene pairs with a total orthologous length of 10.18 Mb. Among these unigenes, 85 and 13 genes were found to undergo significant purifying and positive selection, respectively. Most of the selected genes were homologs of those involved in abiotic stress tolerance or disease resistance in other plants, suggesting that abiotic and biotic stresses were important selective pressures in ramie domestication. Two genes probably related to the fiber yield of ramie were subjected to positive selection, which may be caused by human manipulation. Thus, our results show the pervasive effects of artificial and natural selections on the accelerated domestication of ramie from its wild relative.

分类号: Q946

  • 相关文献

[1]Comparative transcriptomics provide insight into the morphogenesis and evolution of fistular leaves in Allium. Liu, Touming. 2017

[2]Genome-wide transcriptional changes of ramie (Boehmeria nivea L. Gaud) in response to root-lesion nematode infection. Tang, Shouwei.

[3]Genomic regions, cellular components and gene regulatory basis underlying pod length variations in cowpea (V. unguiculata L. Walp). Xu, Pei,Wu, Xinyi,Wang, Baogen,Wu, Xiaohua,Hu, Yaowen,Zhou, Wen,Lu, Zhongfu,Li, Guojing,Xu, Pei,Li, Guojing,Munoz-Amatriain, Maria,Close, Timothy J.,Bao-Lam Huynh,Roberts, Philip A.. 2017

[4]Genetic diversity within Oryza rufipogon germplasms preserved in Chinese field gene banks of wild rice as revealed by microsatellite markers. Zhang, Chi-Hong,Li, Dao-Yuan,Pan, Da-Jian,Jia, Ji-Zeng,Dong, Yu-Shen.

[5]Cadmium-induced oxidative stress and response of the ascorbate-glutathione cycle in Bechmeria nivea (L.) Gaud. Liu, Yunguo,Wang, Xin,Zeng, Guangming,Qu, Dan,Gu, Jiajia,Zhou, Ming,Chal, Liyuan. 2007

[6]Isolation, identification, and environmental adaptability of heavy-metal-resistant bacteria from ramie rhizosphere soil around mine refinery. Jiang, Jie,Pan, Chaohu,Zhang, Guimin,Xiao, Aiping,Yang, Xiai. 2017

[7]Constitutional tolerance to heavy metals of a fiber crop, ramie (Boehmeria nivea), and its potential usage. Yang, B.,Zhou, M.,Shu, W. S.,Lan, C. Y.,Ye, Z. H.,Yang, B.,Zhou, M.,Shu, W. S.,Lan, C. Y.,Ye, Z. H.,Qiu, R. L.,Qiu, R. L.,Jie, Y. C.,Cui, G. X.,Wong, M. H.,Wong, M. H..

[8]Construction and co-expression of polycistronic plasmids encoding bio-degumming-related enzymes to improve the degumming process of ramie fibres. Cheng, Yi,Liu, Zhengchu,Zeng, Jie,Cheng, Lifeng,Yan, Zhun,Duan, Shengwen,Feng, Xiangyuan,Zheng, Ke,Zheng, Xia,Wang, Ruijun.

[9]Senescence is delayed when ramie (Boehmeria nivea L.) is transformed with the isopentyl transferase (ipt) gene under control of the SAG12 promoter. An, Xia,Zhang, Jingyu,Liao, Yiwen,Liu, Lijun,Peng, Dingxiang,Wang, Bo,An, Xia. 2017

[10]Identification of quantitative trait loci for flowering time traits in ramie (Boehmeria nivea L. Gaud). Zhu, Siyuan,Zheng, Xia,Dai, Qiuzhong,Tang, Shouwei,Liu, Touming,Zhu, Siyuan,Zheng, Xia,Dai, Qiuzhong,Tang, Shouwei,Liu, Touming.

[11]Molecular identity of ramie germplasms using simple sequence repeat markers. Luan, M. B.,Zhu, J. J.,Wang, X. F.,Xu, Y.,Sun, Z. M.,Chen, J. H.,Chen, B. F.,Zou, Z. Z.. 2015

[12]Extraction and purification of chlorogenic acid from ramie (Boehmeria nivea L. Gaud) leaf using an ethanol/salt aqueous two-phase system. Tan, Zhijian,Wang, Chaoyun,Yi, Yongjian,Wang, Hongying,Li, Mao,Zhou, Wanlai,Tan, Shiyong,Tan, Zhijian,Li, Fenfang. 2014

[13]SSR markers associated with fiber yield traits in ramie (Boehmeria nivea L. Gaudich). Luan, Ming-Bao,Liu, Chen-Chen,Wang, Xiao-Fei,Xu, Ying,Sun, Zhi-Min,Chen, Jian-Hua. 2017

[14]Identification, evaluation, and application of the genomic-SSR loci in ramie. Luan, Ming-Bao,Yang, Ze-Mao,Zhu, Juan-Juan,Deng, Xin,Liu, Chen-Chen,Wang, Xiao-Fei,Xu, Ying,Sun, Zhi-Min,Chen, Jian-Hua. 2016

[15]Fast evaluation of pectin content in ramie using NIR techniques. Jiang, Wei,Han, Guangting,Jiang, Wei,Han, Guangting,Zhang, Yuanming,Chen, Jianhua. 2011

[16]Identification of drought, cadmium and root-lesion nematode infection stress-responsive transcription factors in ramie. Zheng, Xia,Zhu, Siyuan,Tang, Shouwei,Liu, Touming,Zheng, Xia,Zhu, Siyuan,Tang, Shouwei,Liu, Touming. 2016

[17]Genome-wide transcriptomic profiling of ramie (Boehmeria nivea L. Gaud) in response to cadmium stress. Liu, Touming,Zhu, Siyuan,Tang, Qingming,Tang, Shouwei.

[18]Cloning and Expression of Key Enzyme Gene GalAT in Ramie Pectin Biosynthesis. Liu Jian-xin,Yu Chun-ming,Tang Shou-wei,Zhu Ai-guo,Wang Yan-zhou,Zhu Si-yuan,Ma Xiong-feng,Xiong He-ping,Liu Jian-xin. 2009

[19]Identification of drought stress-responsive transcription factors in ramie (Boehmeria nivea L. Gaud). Liu, Touming. 2013

[20]A New Record of Paratylenchus lepidus (Nematoda: Tylenchulidae) Associated with Ramie Root in Yuanjiang, Hunan Province, China. Yu, Yongting,Liu, Huiling,Zeng, Liangbin,Zhu, Aiguo,Zhang, Gang. 2014

作者其他论文 更多>>