Isolation and characterization of a pathogenesis-related protein 10 gene (GmPR10) with induced expression in soybean (Glycine max) during infection with Phytophthora sojae

文献类型: 外文期刊

第一作者: Xu, Pengfei

作者: Xu, Pengfei;Jiang, Liangyu;Li, Wenbin;Fan, Sujie;Zhang, Shuzhen;Wu, Junjiang;Wu, Junjiang

作者机构:

关键词: Pathogenesis-related (PR) proteins;Soybean (Glycine max);Phytophthora sojae;PR10 gene

期刊名称:MOLECULAR BIOLOGY REPORTS ( 影响因子:2.316; 五年影响因子:2.357 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: In previous study, a cDNA library enriched for mRNAs encoding ESTs that increased in abundance during infection with Phytophthora sojae was constructed by suppression subtractive hybridization from leaf tissues of a high resistant soybean, and an EST homologous to the class 10 of pathogenesis-related (PR) proteins was identified to be up-regulated by microarray and real-time PCR. Here, the full-length cDNA (termed GmPR10, GenBank accession number FJ960440; ADC31789.1) of the EST was isolated by rapid amplification of cDNA ends, and contains an open reading frame of 474 bp. The GmPR10 protein included a "P-loop'' motif. The constitutive transcript abundance of GmPR10 in soybean was the highest in leaves, followed by roots and stems. Further analysis showed that GmPR10 mRNA abundance was increased during infection with P. sojae following leaf treatments with gibberellin (GA(3)), hydrogen peroxide (H2O2), salicylic acid (SA), and abscisic acid (ABA). The dialytically renatured GmPR10 protein significantly inhibited P. sojae hyphal growth and exhibited RNase activity. Transgenic tobacco and soybean plants overexpressing GmPR10 showed increased resistance to P. nicotianae Breda and P. sojae, respectively. These results suggest that the GmPR10 protein plays an important role in host defense against P. sojae infection. To the best of our knowledge, this is the first report on the functional characterization of a PR10 protein from soybean in defense against P. sojae.

分类号: Q7

  • 相关文献

[1]A 796 bp PsPR10 gene promoter fragment increased root-specific expression of the GUS reporter gene under the abiotic stresses and signal molecules in tobacco. Xu, Xiangbin,Guo, Sai,Chen, Kai,Liu, Junjun,Wang, Huizhong,Song, Hongmiao,Liu, Junjun,Guo, Longbiao,Qian, Qian.

[2]Light effect on the tissue contents and distribution of isoflavones in the developing seedling of soybean. Sun, JM,Ding, AL. 1998

[3]Association mapping of loci controlling genetic and environmental interaction of soybean flowering time under various photo-thermal conditions. Mao, Tingting,Li, Wenbin,Han, Tianfu,Mao, Tingting,Li, Jinyu,Wu, Tingting,Wu, Cunxiang,Sun, Shi,Jiang, Bingjun,Hou, Wensheng,Han, Tianfu,Wen, Zixiang,Wang, Dechun,Song, Qijian. 2017

[4]Mapping powdery mildew resistance gene in V97-3000 soybean. Wang, Yueqiang,Shi, Ainong,Zhang, Bo,Chen, Pengyin.

[5]Identification of microRNAs and their mRNA targets during soybean nodule development: functional analysis of the role of miR393j-3p in soybean nodulation. Yan, Zhe,Hossain, Md Shakhawat,Valdes-Lopez, Oswaldo,Wang, Jun,Libault, Marc,Stacey, Gary,Yan, Zhe,Hossain, Md Shakhawat,Valdes-Lopez, Oswaldo,Wang, Jun,Libault, Marc,Stacey, Gary,Arikit, Siwaret,Zhai, Jixian,Meyers, Blake C.,Arikit, Siwaret,Zhai, Jixian,Meyers, Blake C.,Wang, Jun,Qiu, Lijuan,Ji, Tieming.

[6]MicroRNAs Involved in the Pathogenesis of Phytophthora Root Rot of Soybean (Glycine max). Wang Jing,Zhang Li-wei,Wang Jia-lin,Chen Qing-shan,Liu Chun-yan,Hu Guo-hua,Ding Jun-jie. 2011

[7]Expression of a novel bi-directional Brassica napus promoter in soybean. Chennareddy, Siva,Cicak, Toby,Clark, Lauren,Russell, Sean,Skokut, Michiyo,Beringer, Jeffrey,Jia, Yi,Gupta, Manju,Yang, Xiaozeng.

[8]Agronomic traits of soybean cultivars released in different decades after grafting record-yield cultivar as rootstock. Li, Shengyou,Teng, Fei,Rao, Demin,Yao, Xingdong,Zhang, Huijun,Wang, Haiying,Xie, Futi,Song, Shuhong,St Martin, Steven K..

[9]Analysis of simple sequence repeats markers derived from Phytophthora sojae expressed sequencetags. Zhu, ZD,Huo, YL,Wang, XM,Huang, JB,Wu, XF. 2004

[10]Overexpression of GmERF5, a new member of the soybean EAR motif-containing ERF transcription factor, enhances resistance to Phytophthora sojae in soybean. Dong, Lidong,Cheng, Yingxin,Cheng, Qun,Li, Wenbin,Fan, Sujie,Jiang, Liangyu,Xu, Pengfei,Zhang, Shuzhen,Wu, Junjiang,Wu, Junjiang,Kong, Fanjiang,Xu, Zhaolong,Zhang, Dayong.

[11]Phenotypic evaluation and genetic dissection of resistance to Phytophthora sojae in the Chinese soybean mini core collection. Huang, Jing,Guo, Na,Sun, Jutao,Hu, Guanjun,Zhang, Haipeng,Zhang, Xing,Zhao, Jinming,Xing, Han,Li, Yinghui,Li, Yanfei,Qiu, Lijuan. 2016

[12]Fine Mapping and Identification of a Novel Phytophthora Root Rot Resistance Locus RpsZS18 on Chromosome 2 in Soybean. Zhong, Chao,Sun, Suli,Duan, Canxing,Zhu, Zhendong,Yao, Liangliang,Ding, Junjie. 2018

[13]Detached-petiole inoculation method to evaluate Phytophthora root rot resistance in soybean plants. Li, Yinping,Sun, Suli,Zhong, Chao,Zhu, Zhendong.

[14]Differentially Expressed Genes of Soybean During Infection by Phytophthora sojae. Xu Peng-fei,Li Wen-bin,Fan Su-jie,Li Ning-hui,Wang Xin,Jiang Liang-yu,Zhang Shu-zhen,Wu Jun-jiang,Wei Lai,Xue, Allen,Chen Wei-yuan,Lv Hui-ying,Lin Shi-feng. 2012

[15]GmWRKY31 and GmHDL56 Enhances Resistance to Phytophthora sojae by Regulating Defense-Related Gene Expression in Soybean. Fan, Sujie,Dong, Lidong,Han, Dan,Jiang, Liangyu,Cheng, Qun,Li, Rongpeng,Meng, Fanshan,Zhang, Shuzhen,Xu, Pengfei,Fan, Sujie,Jiang, Liangyu,Zhang, Feng,Wu, Junjiang,Lu, Wencheng. 2017

[16]A Novel Soybean ERF Transcription Factor, GmERF113, Increases Resistance to Phytophthora sojae Infection in Soybean. Zhao, Yuanling,Chang, Xin,Qi, Dongyue,Dong, Lidong,Fan, Sujie,Jiang, Liangyu,Cheng, Qun,Chen, Xi,Han, Dan,Xu, Pengfei,Zhang, Shuzhen,Zhao, Yuanling,Wang, Guangjin. 2017

[17]A Novel Soybean Dirigent Gene GmDIR22 Contributes to Promotion of Lignan Biosynthesis and Enhances Resistance to Phytophthora sojae. Li, Ninghui,Zhao, Ming,Liu, Tengfei,Dong, Lidong,Cheng, Qun,Wang, Le,Chen, Xi,Zhang, Chuanzhong,Xu, Pengfei,Zhang, Shuzhen,Li, Ninghui,Wu, Junjiang,Lu, Wencheng. 2017

[18]Isolation and characterization of Bacillus altitudinis JSCX-1 as a new potential biocontrol agent against Phytophthora sojae in soybean [Glycine max (L.) Merr.]. Lu, Xiaoxue,Zhou, Dongmei,Chen, Xi,Zhang, Jinfeng,Huang, Huiwen,Wei, Lihui,Lu, Xiaoxue,Zhou, Dongmei,Chen, Xi,Zhang, Jinfeng,Huang, Huiwen,Wei, Lihui.

[19]Genetic analysis of Phytophthora sojae populations in Fujian, China. Wu, M.,Li, B.,Liu, P.,Weng, Q.,Chen, Q.,Wu, M.,Zhan, J.,Chen, Q..

[20]The histone acetyltransferase PsGcn5 mediates oxidative stress responses and is required for full virulence of Phytophthora sojae. Zhao, Wei,Wang, Tao,Liu, Shusen,Chen, Qingqing,Qi, Rende,Zhao, Wei,Wang, Tao,Qi, Rende.

作者其他论文 更多>>